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Chapter 1

Introduction

Attitude and personality measures are getting more and more attention
in the educational, employment and clinical context. Analogous to
ability measures, these typical performance measures (Cronbach, 1984) are
important predictors for outcomes such as performance and satisfaction
across situations (Meyer et al., 2001). Attitude and personality traits
cannot be observed directly. Therefore, observed responses have to be
gathered by means of inventories (or scales), observations, and interviews.
To translate the responses to questions into a latent (unobservable) value
for the attitude or personality trait, statistical techniques are being
used. Although all data collection techniques obtain similar but partially
overlapping information, and a combination of the techniques is necessary in
practice, in this thesis the focus is on inventories or scales. In the remainder
of this thesis the term typical performance measures will be used.

1.1 Typical performance measurement

Observed responses to measure personality traits and attitudes are often
collected using inventories. Inventories consist of a number of statements
that are supposed to measure the intended traits. Persons have to respond
to the statements on dichotomous (2 answer options) or polytomous (3 or
more answer options) Likert scales. An example of statements about the
personality trait Conscientiousness with response categories on a 4-point
Likert scale is given in Figure 1.1. Some typical performance measures
are designed to measure just one trait (as in the figure), whereas others
are designed to measure a wide range of traits, each consisting of a set of
related statements.
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Chapter 1

Statements Strongly Strongly
Disagree Disagree Agree Agree

I am always prepared � � � �
I make a mess of things � � � �

Figure 1.1. Example of Conscientiousness statements with 4-point Likert scale response
categories.

Statistical procedures can be followed to obtain latent trait estimates
about the personality or attitude constructs. Most of these procedures
heavily rely on classical test theory (CTT) and factor analytical methods,
but recently dominance item response theory (IRT) models have also been
used to analyze typical performance data. The models used to construct
and analyze typical performance measures are often copied from the area of
maximum performance measurement (i.e. from the area of educational and
cognitive measurement). However, there are several systematic features of
typical performance measures that warrant attention. In this thesis two
features are discussed; 1. the multitude of factors in typical performance
measures, and 2. response processes on typical performance measures.

The first important difference between maximum performance
assessment and typical performance assessment is that personality and
attitude scales have more complexity in their factor structures than
cognitive ability tests. As noted by many psychological theorists (e.g.,
Funder, 1997) attitude and personality are usually determined by a
multitude of factors. Through this additional complexity, more complex
test models, such as multidimensional models, might be much more eminent
in typical performance measurement than in educational measurement.

A second difference between maximum and typical performance is that
in cognitive assessment it is often useful to think of a domain, where the test
items are a sample from the domain. In general, these cognitive tests need
to be long to be reliable and, because the domain is so large researchers
need a large sample of items to accurately assess the domain. In typical
performance assessment, many of the domains are quite restricted. One
cannot repeat statements (e.g., asking respondents how depressed they are)
over and over again. Thus in typical performance assessment large item
pools do not exist or item pools consist of very similar statements (Reise
& Henson, 2003). The consequence is that it is difficult to create long
inventories for these constructs, because researchers simply run out of non-
redundant questions.

Yet, given the relatively long history of typical performance
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Introduction

measurement and the fact that typical performance research has historically
been at the forefront of statistical and methodological innovations, it is
surprising that recent IRT analyses have shown that the structure of many
well-known and often used personality measures is not well understood
(e.g., Chernyshenko et al., 2001; Reise & Waller, 2003; Meijer & Baneke,
2004). Personality measures might follow a different response process than
implied under the dominance IRT models and factor analytic models used.
For example, unfolding response models, which have already been proposed
by Coombs (1964) for the attitude domain, may provide a better description
of the responses to personality items as well. An advantage of the unfolding
models is that items can be written over a broader range of the trait
continuum (see Chernyshenko et al., 2001), so more items can be written
and larger item pools can be constructed. In the example in Figure 1.1 a
neutrally formulated item like ”Half of the time I do things according to
a plan” could be included in the inventory, whereas this is not an option
when using factor analytical or dominance IRT methods.

Because of these differences between maximum performance and typical
performance it is important to not simply apply statistical procedures
applied in maximum performance testing to typical performance testing.
The applicability of the procedures has to be investigated first. This thesis
focuses on the usefulness of various models to investigate dimensionality
and response behavior on typical performance measures. Multidimensional
models will be discussed in Chapter 2 and 3, and unfolding IRT models
and statistical testing of these unfolding IRT models will be discussed in
Chapter 4, 5 and 6. First some brief descriptions of the structural equation
modeling (SEM) and item response theory (IRT) frameworks will be given
in the next two paragraphs. SEM (Paragraph 1.2) can be used to investigate
the dimensionality of typical performance measures, while IRT (Paragraph
1.3) is used to investigate response processes to typical performance
measures. After the explanations of the modeling frameworks and the
usefulnes of these models for modeling typical performance measures, an
overview of the thesis will be given in Paragraph 1.4.

1.2 Structural equation modeling

The structural equation modeling (SEM or covariance structure analysis;
Bollen, 1989; Kline, 2005) framework refers to a family of statistical
procedures. Most statistical techniques in SEM make a distinction
between observed and latent variables. Relations between observed
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variables, between observed variables and latent variables and between
latent variables are studied. In general, SEM uses measurement parts,
which describe the relations between observed variables (the statements)
and latent variables (the constructs measured), and structural parts, that
model (causal) relations between constructs. In general, in SEM the
major statistics to analyze relations between variables are covariance and
correlation.

The structural equation models used in this thesis are mainly based
on confirmatory factor analysis, which is a technique for the estimation of
measurement models. Covariances and correlations between many observed
variables are explained by means of one or more underlying latent variables.
The observed statements are considered to be from interval level and to be
linearly associated with one another and the underlying construct. Even
though the observed statements are considered to be of interval level, the
responses to typical performance statements are on the ordinal level as
is shown in the example in Figure 1.1. The solution to this difference
is that responses to statements are assumed to represent a truncation
of a hypothetical underlying continuous normally distributed response
process. Thresholds represent the shift from one categorical response to the
other. Dependent on the position of a person on the continuous response
continuum of a statement, the person will respond in the category that
covers the persons’ position. The hypothetical continuous responses to
statements are used to calculate the relations between the variables.

Typical performance measures consist of a number of statements
measuring one or more constructs. Constructs might be (strongly)
related facets (subconstructs) of a more general construct or several
major constructs. Individual constructs or facets are often described by
unidimensional models. In case of more than one (sub)construct, the
constructs might be correlated (non-hierarchical multidimensional models)
or might measure a more general factor that describes the relationship
between the constructs (i.e. second-order model; DeYoung, 2006; Digman,
1997; Gustafsson, 1984). However, other types of multidimensional
models (i.e. the bifactor model, that uses both general and domain-
specific constructs) might explain the relations between typical performance
constructs and/or facets more precisely. Structural equation modeling can
help to evaluate inventories containing a multitude of factors. In this
thesis the applicability of the non-hierarchical multidimensional model, the
second-order model and the advanced bifactor model to typical performance
measures will be investigated.
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1.3 Item response theory models

Takane and de Leeuw (1987) show that item response theory (IRT)
models can be viewed as an extension of the more commonly used factor-
analytic models. IRT modeling is a statistical technique that focuses on
individual observations. This technique has rapidly become the theoretical
basis for maximum performance assessment, and recently is also applied
for typical performance measures as well.

Dominance IRT models explain the performance of a person on a test
item by latent factors. The influence of respondents and test items is
explicitly modeled by different sets of parameters. Categorical observed
responses to statements are used directly, and the relationship between
a person’s item response and the latent factor underlying this response
can be described by an item characteristic curve (ICC). An ICC gives
the response probability as a function of the latent variable by nonlinear
functions. Both dominance IRT models for dichotomous items (i.e. Rasch
model, 2-parameter logistic model, 3-parameter logistic model) and for
polytomous items (i.e. generalized partial credit model, graded response
model, sequential model) exist (Embretson & Reise, 2000; Hambleton,
Swaminatan, & Rogers, 1991; Van der Linden & Hambleton, 1997).

In this thesis, IRT models for dichotomous items are discussed.
Dominance IRT models assume that the ICCs are monotone increasing or
monotone decreasing functions. These functions are modeled by (highly)
restricted parametric models (Lord, 1980) or more general non-parametric
models (Sijtsma & Molenaar, 2001). The idea behind these models is that
the higher a person is located on the latent trait the more statements the
person will endorse. A person is likely to endorse all statements that have an
item location below the person location. Although research on applications
of IRT models to typical performance measurement is increasing (Reise &
Waller, 2003), first attempts to model typical performance data by these
models found contradictory results. Several researchers reported reasonable
fit of 2-parameter logistic models (i.e. models of which the ICC is described
by two parameters, a location and a discrimination parameter), but recent
studies showed that more general models might be needed to describe
typical performance data. One possibility is to use unfolding IRT models,
which will be extensively studied in this thesis. Under unfolding IRT models
the probability of endorsement of a dichotomous statement is described by
a single-peaked ICC. The idea behind these models is that persons only
endorse statements if their person location is close to the item location.
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Persons located at the higher end of the trait range are not supposed to
endorse a high number of statements as is the case for dominance IRT
models, but only endorse the statements that represent his/her location,
the positively formulated statements. Persons located at the lower end
of the trait range are only supposed to endorse statements on the lower
end of the continuum, the negatively formulated statements, and persons
located in the middle of the trait continuum are supposed to only endorse
statements located in the middle of the continuum, the neutrally formulated
statements. The applicability of unfolding IRT models will be investigated
in this thesis.

1.4 Overview of the thesis

Two main topics will be addressed in this thesis, modeling of the
multitude of factors in typical performance measurement, and modeling
of the response processes on typical performance measures. Chapters 2
and 3 investigate the dimensionality structure of personality and attitude
inventories. In Chapter 2 the differences in appropriateness of a number
of factor analytical models (i.e. non-hierarchical multidimensional model,
second-order model, and bifactor model) are investigated. Different models
are applied using empirical data of a dichotomously scored personality
inventory. Using different models, the dimensionality structure of the
instrument, the dimensionality of items, the interpretability of scales
for practical implications, and the scoring of individuals on constructs
will be discussed. Chapter 3 discusses only a selection of these models
(non-hierarchical multidimensional model and bifactor model), which are
applied to investigate the dimensionality structure of a polytomous attitude
inventory, and to investigate the dimensionality of the items, and the
interpretability of these scales.

Research on response processes and statistical fit of the associated
models are discussed in the Chapters 4, 5, and 6. To obtain more insight
into the response processes on typical performance data, in Chapter 4 it
is investigated whether dominance or unfolding IRT models give a better
description of the response processes on personality trait inventories. In
this chapter, both dominance response processes and ideal-point response
processes are discussed, and parametric and non-parametric dominance
IRT models, and parametric and non-parametric unfolding IRT models
are applied. Chapter 5 and 6 move on to investigate statistical fit on
unfolding models for ideal-point response processes. An existing model, the
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generalized graded unfolding model (GGUM), and three newly developed
models, the collapsed generalized partial credit model (CGPCM), the
collapsed graded response model (CGRM) and the quadratic logistic
regression model (QLOG) are studied. From the beginning of typical
performance assessment, authors of inventories are seriously concerned
with both measuring and correcting for respondents’ tendencies to deceive
themselves or others in responding to statements. Therefore two person fit
statistics are developed and investigated for unfolding models in Chapter
5. The newly developed person fit statistics are applied in a simulation
study on a real attitude data set. On the other hand, item fit is important
because instruments are developed that are used in a population of persons.
Item fit can help the test constructor to develop an instrument that fits an
IRT model in that particular situation. In Chapter 6 two item fit statistics
are developed and tested in a simulation study and in a real data example.

After the studies on response processes and unfolding models,
conclusions and suggestions for further research will be given in Chapter
7. The chapters in this thesis are self-contained, hence they can be read
separately. Therefore, some overlap could not be avoided and the notations,
the symbols and the indices may slightly vary across chapters.
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Chapter 2

A comparison of factorial
models in personality
measurement

2.1 Introduction

Psychological tests and questionnaires often measure a number of
related constructs. Two examples are intelligence test batteries that
include both general and domain-specific intelligence factors such as verbal
intelligence and spatial ability, and personality measures such as depression
questionnaires that include multiple indicators of, for example, negative
mood, suicidal ideation, and social withdrawal. The analysis of the
dimensionality structure of these measurement instruments relies heavily
on confirmatory factor analysis. The dimensionality structure is often
explored using non-hierarchical multidimensional models or higher-order
models such as second-order models (e.g., DeYoung, 2006; Digman, 1997;
Gustafsson, 1984).

Bifactor models have a rich history in the intelligence domain (e.g.,
Rindskopf & Rose, 1988; Luo, Petrill, & Thompson, 1994), and the ability
and achievement domain (e.g., Gustafsson & Balke, 1993). Rindskopf and
Rose (1988), Gustafsson and Balke (1993), Chen, West, and Sousa (2006)
and Reise, Morizot, and Hays (2007) discussed statistical and conceptual
similarities and differences between non-hierarchical multidimensional
models, second-order models, and bifactor models.

Although the use of bifactor models is increasing there is not much
experience with these models to analyze personality and health domain
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data. Exceptions are Brouwer, Meijer, Weekers, and Baneke (2008), Chen,
West, and Sousa (2006), Patrick, Hicks, Nichol, and Krueger (2007) and
Reise, Morizot, and Hays (2007). Reise, Morizot, and Hays (2007) and
Brouwer, et al. (2008) show that bifactor models are excellent tools to
investigate whether multidimensionality of an instrument interferes with
the scaling of individuals on unidimensional domain-specific constructs.
Any scale which is not simply the repeating of the same item over and over
again has some multidimensionality, and on a theoretical and conceptual
level the constructs might be described as relatively distinct, but on a
measurement level participants might not perceive measures of the domain-
specific constructs in this way. Therefore, it is important to investigate
if a more general construct is viable, if domain-specific factors make a
contribution over and above the general factor, and how the results can be
used in practice.

In the present study, we extend the Chen, West, and Sousa (2006) study,
and the Reise, Morizot, and Hays (2007) study by analyzing a personality
inventory, the Dutch Personality Inventory for Adolescents (Dutch: Junior
Nederlandse Persoonlijkheidsvragenlijst; NPV-J; Luteijn, van Dijk, &
Barelds, 2005), using the non-hierarchical multidimensional model, the
second-order model and the bifactor model, and by discussing the practical
implications for interpretation and for scoring of individuals when using the
different models. First, we explain the non-hierarchical multidimensional
model, the second-order model, and the bifactor model, and discuss the
statistical and conceptual similarities and differences between the models.
Second, we apply these models to empirical data. Finally, recommendations
about the appropriateness of the models in practice are given.

2.2 Factorial models

In Figure 2.1, a graphical representation of the three models used in
this study is given. A common representation was used, in which squares
represent the observed item responses, circles represent the latent factors,
straight arrows represent item factor loadings, and curved double-headed
lines represent correlations.

The factorial structure of a particular measure is modeled in three ways.
In the non-hierarchical multidimensional model (Figure 2.1a), there is more
than one common factor among the items, and the factors are correlated.
Each item in a multifactor measure loads on one factor only. When each
factor is hypothesized to have a non-zero correlation with every other factor,

10
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A B

C

Figure 2.1. Graphical representation of a) the full non-hierarchical multidimensional
model, b) the second-order model, and c) the bifactor model.

the model is a full non-hierarchical multidimensional model. However, it is
possible that some factors have zero correlations with some other factors
and are non-zero correlated with other factors.

In a second-order model (Figure 2.1b), items are loading on first-order
factors and first-order factors are loading on second-order factors. The
second-order factor is a conceptually different type of dimension, a super-
ordinate dimension, which represents a single broad, coherent construct.
So first-order factors account for correlations between items, and second-
order factors account for the communality among latent first-order factors.
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Under this model items are not directly influenced by the general second-
order factor.

The bifactor model (also called group-factor model; Figure 2.1c) specifies
one general factor, and two or more group factors. In most applications,
items load on both the general factor and one of the group factors. In
this study, a bifactor model is considered in which general and group
factors are assumed to be orthogonal (correlation is zero) to each other.
The general factor then explains the item intercorrelations, but in addition
there are group factors that attempt to capture the item covariation that
is independent of the covariation due to the general factor. Items in the
same scale in an inventory are related because they share both general and
subscale variance.

2.2.1 Similarities and differences between the factorial
models

In the non-hierarchical multidimensional model, the correlations
between dimensions are estimated based on the hypothesis that items
are influenced by multiple correlated domain-specific factors. However,
the higher the correlation among domain-specific factors the more likely a
general factor is dominating the item responses, and interpretation of the
subscale scores can be confounded by an overall factor. The second-order
model and bifactor model provide an overall factor that explains common
variance in items of different scales. In the second-order model this is the
second-order factor, and in the bifactor model this is the general factor.
The overall factors of both the second-order model and the bifactor model
correspond to each other, and have similar interpretations (Chen, West, &
Sousa, 2006; Gustafsson & Balke, 1993, Rindskopf & Rose, 1988; Yung,
Thissen, & McLeod, 1999). The only difference is that the second-order
model specifies the common variance via first-order factors, whereas under
the bifactor model items directly load on the general factor.

When there are three domain-specific factors the non-hierarchical
multidimensional model and second-order model are equivalent (see also
Rindskopf & Rose, 1988). The non-hierarchical multidimensional model
and the second-order model have the same number of parameters, which
makes them statistically undiscriminable, and both models have equal
goodness-of-fit statistics and standardized factor loadings on the first-
order factors. Model fit alone cannot tell us which model is more
appropriate. The difference between the models is that the non-hierarchical
multidimensional model estimates correlations between first-order factors,
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whereas the second-order model estimates factor loadings of first-order
factors on the second-order factor. Both models can only be distinguished
in terms of interpretability of parameter estimates and meaningfulness of
the model (for further explanation on equivalent models see, Bollen, 1989,
and MacCallum, Wegener, Uchino, & Fabrigar, 1993). The difference
in interpretation is that the second-order model puts a structure on the
pattern of non-restricted correlations among the first-order factors as
modeled in the non-hierarchical multidimensional model.

In the bifactor model, item variance can be partitioned into item
variance due to general and group factors. The group factors are directly
specified in the bifactor model, and explain the item intercorrelations
that capture the residual variation due to secondary dimensions. In the
second-order model, they are modeled in the disturbances of the first-order
factors, and are not directly visible. The disturbances of the first-order
factors in the second-order model have the same interpretation as the group
factors under the bifactor model. Both explain common variance between
items after partialing out the general factor. Only when there is a weak
general factor and relevant domain-specific factors, interpretation of the
domain-specific scores under the non-hierarchical multidimensional model
is less confounded by the general factor, and this model might be a viable
alternative.

The differences between the models become more important when
researchers are interested in the contribution of one or more of the domain-
specific factors over and above the general factor, and in the prediction of
external variables. Using a non-hierarchical multidimensional model it is
difficult to predict outcome variables of interest, because of substantial
overlap in variability. The second-order model separates general and
domain-specific variance. However, domain-specific variance is modeled
in the disturbances, and as a consequence it is difficult to predict external
variables by domain-specific factors. For the bifactor model it is easy to
estimate latent domain-specific factors over and above the general factor,
and to predict external criteria by these domain-specific factors. Since
group factors are identified in the bifactor model only if residual variance is
left after the general factor is identified, an empirically informed judgment
regarding the utility of creating and scoring domain-specific factors, and
the dimensionality of items, unidimensional or multidimensional, can be
made. However, the estimation of bifactor models in which one subscale
does not exist may cause computational problems. In this case, the second-
order model should find few residual variance, and loadings of the first-
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order factors on the second-order factor close to unity. Although under
the second-order model the correct interpretation would also be that the
domain-specific factors do not exist as residual factors (no significant
disturbances), this is often overlooked.

The differences between the models are also important when the
objective is to investigate whether multidimensionality of the instrument
interferes with scaling of individuals on unidimensional constructs.
Dependent on the model, individuals will be scored on domain-specific
factors (non-hierarchical multidimensional model), on domain-specific
factors and general factors as indicators of domain-specific factors (second-
order model), or on separate domain-specific and general factors (bifactor
model). General factor scores are estimated, via first-order factors (second-
order model) or directly from the items (bifactor model), and domain-
specific factor scores have a different interpretation under the bifactor
model compared to the non-hierarchical multidimensional model and the
second-order model. Misspecification of the model may have serious
consequences for the scoring of individuals on general and domain-specific
latent constructs.

2.3 Aim of this study

This chapter discusses an application of the non-hierarchical
multidimensional model, the second-order model, and the bifactor model
in the personality domain. These three models, and the uncorrelated
unidimensional model as a baseline model (to be discussed below), were
used to analyze data of the Dutch Personality Inventory for Adolescents
(Dutch: Junior Nederlandse Persoonlijkheidsvragenlijst; NPV-J; Luteijn,
van Dijk & Barelds, 2005). The aim of this study was to investigate the
relevance of these models to enhance the understanding of the content of
the NPV-J, and the scaling of individuals on it. The appropriateness of the
models was checked to investigate the dimensionality structure of the NPV-
J and the dimensionality of the items, the interpretation of subscale scores
for practical implications, and the scoring of individuals on constructs.
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2.4 Method

2.4.1 Instrument

The NPV-J is a general personality inventory for selection of adolescents
for different types of education, and for diagnostic purposes. The NPV-
J consists of five scales; Inadequacy, Persistence, Social Inadequacy,
Recalcitrance, and Dominance. The five scales are used as unidimensional
scales and individuals are scaled on the personality characteristics using
simple sum scores. The simple sum scores are often combined in profile
scores.

Barelds and Luteijn (2002) investigated the relation between the
Dutch Personality Questionnaire (Dutch: Nederlandse Persoonlijkheids-
vragenlijst, NPV, the adult version of the NPV-J; Luteijn, Starren, & van
Dijk, 1985), and the Five Factor Personality Inventory (FFPI; Hendriks,
Hofstee, & de Raad, 1999). They found that Inadequacy was related
to Emotional Stability (r = −.65), Social Inadequacy and Dominance
were related to Extraversion (r = −.74 and r = .48, respectively), and
Persistence was related to Conscientiousness (r = .57). The content of the
NPV-J was compared with the content of five factor model questionnaires.
Based on independent content sorting, relations between NPV-J scales and
five factor model subdomains were found (see Table 2.1). The relations to
the five factor model subdomains will be used for scale interpretation under
the different models.

2.4.2 Participants and procedure

Data were collected from 609 primary and secondary school pupils, 331
mostly White girls, and 278 mostly White boys. They attended primary
and secondary schools in the East of the Netherlands. All participants were
between 9 and 15 years of age, with a mean age of 12.7 (SD = 2.1).

The participants filled out the inventory, which consisted of 105
statements about themselves. Statements were unequally divided over
the five scales. In the NPV-J, statements are administered using a three-
point scale (Agree, ?, Disgree), but because the instructions of the NPV-J
discourage the use of the ? response, and because I was afraid that many
adolescents would choose the ? category, a two-point-scale, Agree versus
Disagree, was used.
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Table 2.1
Relation between NPV-J items and subdomains of the Five Factor Model
NPV-J scale Subdomains Itemnumber NPV-J

Five Factor Model
Inadequacy Anxiety 04, 13, 19, 32, 48, 57,

70, 75, 91, 96, 98
Depression 01, 06, 08, 14, 28, 34,

36, 38, 50, 52, 54, 59,
66, 72, 93, 100, 102

Persistence Orderliness 33, 104
Achievement-striving 31, 39, 43, 45, 95
Dutifulness/Self-discipline 02, 10, 12, 30, 41, 53,

63, 68, 69, 71, 73, 77,
78, 84, 88, 94, 101, 103

Social Inadequacy Sociability 21, 23, 26, 44, 51, 62,
79, 80, 85, 89, 105

Introversion 22, 25
Recalcitrance Trust 05, 18, 24, 29, 37, 40, 49,

55, 61, 74, 82, 83, 87
Altruism 11, 15, 16, 20, 35, 42,

46, 47, 65, 86, 92
Dominance Assertiveness 03, 07, 09, 27, 56, 58, 60,

64, 67, 76, 81, 90, 97
Activity Level 17, 99

2.4.3 Analyses

The quality of the items of the NPV-J was investigated in an earlier
study on scaling of response processes on the NPV-J (see Chapter 4).
Number of items (k), scale means, Cronbach’s α, skewness, kurtosis, and
mean item-test correlations (ρiT ) for the original five scales are given
in Table 2.2. Reliability ranged from .62 to .87, and mean item-test
correlations from .25 to .42.

The correlations between the sum scores on all five scales are shown
in Table 2.3. These values are similar to the values found by Luteijn,
van Dijk, and Barelds (2005, p.16). Because of the moderate to high
correlations, to compare the different models, we selected the three scales,
Inadequacy, Social Inadequacy, and Recalcitrance. Luteijn, van Dijk, and
Barelds (2005) already mentioned the strong relations between Inadequacy,
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Table 2.2
Descriptive statistics NPV-J data
Scales k M SD α Skewness Kurtosis ρiT
Inadequacy 28 6.36 5.37 .87 1.13 0.91 .42
Persistence 25 18.27 3.80 .73 -0.63 0.00 .27
Social Inadequacy 13 5.28 3.09 .78 0.23 -0.81 .40
Recalcitrance 24 8.45 3.68 .72 0.69 0.47 .27
Dominance 15 5.10 2.48 .62 0.73 0.63 .25

Table 2.3
Correlations of sumscore between NPV-J scales
Scale Inadequacy Persistence Social Recalcitrance

Inadequacy
Persistence -.004
Social Inadequacy .523 .111
Recalcitrance .475 .079 .361
Dominance .088 .075 -.108 .206

Social Inadequacy, and Recalcitrance. These moderate correlations may
indicate the presence of a higher-order factor (Chen, West, & Sousa, 2006;
Reise, Morizot, & Hays, 2007).

Also theoretically the three scales might measure one general
construct. Inadequacy and Social Inadequacy both measure insecure
and anxious behavior, whereas Recalcitrance measures distrust and
non-cooperative behavior. Together, these three scales can be seen as
a measure of Inadequate Behavior. From this point of view Inadequate
Behavior is the general factor consisting of 65 items, of which 28 items
measure Inadequacy, 13 items measure Social Inadequacy, and 24 items
measure Recalcitrance. The question is whether the general factor is
strong enough to be measured as a separate construct or whether a
multidimensional representation has to be preferred.

Because subscales of the NPV-J are used as independent scales,
the uncorrelated unidimensional model consisting of three uncorrelated
unidimensional scales was estimated besides the non-hierarchical
multidimensional model, the second-order model, and the bifactor model.
The expectation is that the uncorrelated unidimensional model does not
fit the data well, because of moderate sumscore correlations between the
three scales. In this study, the uncorrelated unidimensional model will be
used as a baseline model.

MPLUS 4.1 (Muthén & Muthén, 1998-2006) was used to estimate
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Table 2.4
Fit statistics NPV-J data
Model χ2 (df) CFI TLI RMSEA SRMR

p-value
Unidimensional model 16558.44 (2015) .55 .53 .11 .19

<.01
Non-hierarchical 4498.81 (2012) .92 .92 .05 .10
multidimensional model <.01
Second-order model 4498.81 (2012) .92 .92 .05 .10

<.01
Bifactor model 3678.64 (1950) .95 .94 .04 .08

<.01

the four models. The Weighted Least Squares Mean Adjusted (WLSM)
estimation option was used for all calibrations. For model evaluation the
WLSM estimation option provides a Chi-square statistic (χ2), Comparative
Fit Index (CFI), Tucker-Lewis Index (TLI), Root Mean Squared Error of
Approximation (RMSEA), and Standardized Root Mean Squared Residual
(SRMR). Criteria for the fit statistics were set at values of .95 or higher
for CFI and TLI, a value of .08 or lower for SRMR, and a value of .06 or
lower for RMSEA. These values constitute good fit as was suggested by
Hu and Bentler (1999). Furthermore, factor loadings, correlations, residual
variance, and factor scores were studied. Items are interpreted to load
on a factor if the factor loading is at least .35 (Stevens, 2002). Items with
loadings greater than or equal to .35 on more than one factor are interpreted
as multidimensional. Individuals’ simple sum scores on the factors (conform
scoring as described in the manual) were computed to compare them to the
individuals’ weighted factor scores estimated under MPLUS. Factor score
values range from negative to positive, with a mean value of (about) zero,
and an estimated standard deviation.

2.5 Results

2.5.1 Dimensionality structure and interpretation

Fit statistics for all models are shown in Table 2.4, and item factor
loadings under the models are shown in Table 2.5.

As expected, the uncorrelated unidimensional model showed no
acceptable fit. Values for all fit statistics were below the cutoff criteria
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(CFI and TLI) or above the cutoff criteria (RMSEA and SRMR). As
expected, the non-hierarchical multidimensional model and the second-
order model showed equally reasonable fit, whereas the bifactor model
showed acceptable fit. For all three models the RMSEA statistic was below
the cutoff criterion. The CFI and SRMR statistic were above and below
the cutoff criteria for the bifactor model only, and the TLI statistic was
below the cutoff criterion for the three models, but almost equal to the
cutoff criterion for the bifactor model.

Table 2.5 shows that under the uncorrelated unidimensional model all
Inadequacy items, most Social Inadequacy items and seventeen out of 24
Recalcitrance items had loadings of .35 or higher on their constructs. The
two Sociability items of the Social Inadequacy scale and the four Trust
items and three Altruism items of the Recalcitrance scale with loadings
below .35 were items that also in a former study by Weekers and Meijer
(2008; described in Chapter 4) were found to be of low quality or had
single-peaked response curves.

For the non-hierarchical multidimensional model and the second-order
model, besides equal fit, the factor loadings of the items on the first-order
factors were equal as well. Equal loadings on first-order factors were the
result of equivalence of both models, because there were only three first-
order factors. However, correlations (non-hierarchical multidimensional
model) and factor loadings of the first-order factors on the second-
order factor (second-order model) differed. The analyses showed that all
Inadequacy, most Social Inadequacy, and fifteen out of 24 Recalcitrance
items had loadings of .35 or higher on their constructs. One Sociability
item of the Social Inadequacy scale, and five Altruism items and four Trust
items of the Recalcitrance scale had loadings below .35. Not all Trust and
Altruism items were similar to the items with loadings below .35 under the
uncorrelated unidimensional model.

Correlations between the three constructs under the non-hierarchical
multidimensional model were moderate to high; r = .66 between
Inadequacy and Social Inadequacy, r = .74 between Inadequacy and
Recalcitrance, and r = .54 between Social Inadequacy and Recalcitrance.
Under the second-order model loadings of the first-order factors on the
second-order factor were high also; λ = .95 for Inadequacy, λ = .70 for
Social Inadequacy, and λ = .78 for Recalcitrance, and residual variance was
low; ζ = .10 for Inadequacy; ζ = .51 for Social Inadequacy, and ζ = .39 for
Recalcitrance. Under the second-order model, Inadequacy was an almost
perfect indicator of the general factor.
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Table 2.5
Item factor loadings for NPV-J data
Item Subdomain UUM NHMM/SOM BFM

IN SI RE IN SI RE GE IN SI RE

IN1 De .508 .459 .340 .446

IN2 An .402 .386 .325 .251

IN3 De .476 .449 .341 .405

IN4 De .790 .766 .654 .444

IN5 An .378 .403 .384 .103

IN6 De .778 .771 .683 .380

IN7 An .384 .454 .518 -.175

IN8 De .867 .844 .701 .539

IN9 An .522 .461 .310 .555

IN10 De .578 .546 .426 .466

IN11 De .638 .674 .632 .224

IN12 De .635 .615 .517 .389

IN13 An .557 .594 .589 .076

IN14 De .584 .524 .366 .591

IN15 De .504 .518 .474 .211

IN16 De .810 .790 .673 .469

IN17 An .625 .676 .658 .138

IN18 De .578 .610 .634 -.018

IN19 De .810 .813 .752 .296

IN20 An .732 .761 .769 .067

IN21 De .514 .533 .516 .115

IN22 An .764 .757 .704 .261

IN23 An .587 .605 .590 .117

IN24 De .848 .844 .775 .329

IN25 An .729 .727 .660 .310

IN26 An .455 .455 .397 .259

IN27 De .520 .491 .410 .338

IN28 De .773 .789 .780 .127

SI1 So .544 .429 .220 .546

SI2 In .489 .603 .490 .226

SI3 So .748 .677 .426 .631

SI4 In .635 .616 .422 .471

SI5 So .721 .709 .493 .532

SI6 So .245 .204 .130 .186

SI7 So .593 .593 .416 .432

SI8 So .769 .693 .430 .656

SI9 So .666 .785 .623 .332

SI10 So .307 .408 .357 .083

SI11 So .770 .766 .535 .547

SI12 So .744 .702 .470 .572

SI13 So .622 .727 .578 .302
* UUM = uncorrelated unidimensional model, NHMM = non-hierarchical multidimensional model,

BFM = bifactor model, IN = inadequacy, SI = social inadequacy, RE = recalcitrance De = depression,

An = anxiety, In = introversion, So = sociability
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Table 2.5 (continued)
Item factor loadings for NPV-J data
Item Subdomain UUM NHMM/SOM BFM

IN SI RE IN SI RE GE IN SI RE

RE1 Tr .292 .366 .329 .104

RE2 Al .479 .367 .249 .537

RE3 Al .393 .175 .036 .602

RE4 Al .318 .247 .170 .360

RE5 Tr .474 .457 .384 .140

RE6 Al .168 -.079 -.152 .416

RE7 Tr .372 .286 .207 .337

RE8 Tr .571 .554 .455 .327

RE9 Al .455 .476 .399 .200

RE10 Tr .485 .510 .447 .093

RE11 Tr .272 .129 .025 .545

RE12 Al .497 .492 .397 .305

RE13 Al .368 .335 .267 .221

RE14 Al .317 .161 .071 .403

RE15 Tr .577 .596 .517 .138

RE16 Tr .293 .154 .081 .338

RE17 Tr .516 .472 .381 .289

RE18 Al .659 .547 .404 .559

RE19 Tr .734 .785 .674 .257

RE20 Tr .369 .419 .373 .018

RE21 Tr .676 .816 .706 .203

RE22 Al .663 .754 .644 .260

RE23 Tr .293 .175 .077 .535

RE24 Al .627 .636 .513 .435
* UUM = uncorrelated unidimensional model, NHMM = non-hierarchical multidimensional model,

BFM = bifactor model, IN = inadequacy, SI = social inadequacy, RE = recalcitrance, Tr = trust,

Al = altruism

Both the non-hierarchical multidimensional model and the second-order
model indicated that the original scales shared much variance, and thus a
theoretically based general factor might be valid. However, a number of
items had loadings below .35, which might indicate that they have higher
loadings on an additional second dimension. As Table 2.5 shows, for the
bifactor model, out of the 28 Inadequacy items there were only five items,
mostly measuring Depression, which had higher loadings on the domain-
specific Inadequacy scale than on the general factor. On the other hand
there were 22 items, thirteen measuring Depression and nine measuring
Anxiety, with a higher loading on the general factor than on the domain-
specific Inadequacy factor. Only one item (Anxiety) had loadings below
.35 on both general factor and domain-specific Inadequacy factor. Almost
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80% of the Inadequacy items loaded on the general factor, which supports
the high loadings of the first-order Inadequacy factor on the second-order
factor under the second-order model. The items with both loadings on
general factor and domain-specific Inadequacy factor or only loadings on the
domain-specific Inadequacy factor were mostly items measuring Depression.

Of the thirteen Social Inadequacy items, eight items, mostly measuring
Sociability, had higher loadings on the domain-specific Social Inadequacy
factor than on the general factor. Four items, three measuring Sociability
and one measuring Introversion, had higher loading on the general factor
than on the domain-specific factor, and only one item had no loading of
.35 or higher on the general or domain-specific Social Inadequacy factor.
Although most items had higher loadings on the domain-specific Social
Inadequacy factor than on the general factor, seven out of eight had
a slightly lower loading, but still loadings > .35 on the general factor
as well. This is in accordance with the high loading of the first-order
Social Inadequacy factor on the second-order factor under the second-
order model. Because items of both the Inadequacy scale and the Social
Inadequacy scale have acceptable loadings on the general factor, this may
explain the high correlation between both scales under the non-hierarchical
multidimensional model.

Twelve out of 24 Recalcitrance items, eight measuring Trust and four
measuring Altruism, had higher loadings on the general factor than on the
domain-specific Recalcitrance factor. Furthermore there were eight items
with higher loadings on the domain-specific Recalcitrance factor than on
the general factor, of which two items were Trust items and the other six
items were Altruism items. Four items, three measuring Trust and one
measuring Altruism, had loadings below .35 on both general factor and
domain-specific Recalcitrance factor. Whereas both Altruism and Trust
items had high loadings on the general factor, mainly Altruism items had
high loadings on the domain-specific Recalcitrance factor. About 50% of the
items of the Recalcitrance scale had loadings above .35 on the general factor.
This explains the high loading of the first-order Recalcitrance factor on the
second-order factor under the second-order model, but also the moderate
correlation between the Recalcitrance factor and the Inadequacy factor,
and the Recalcitrance factor and the Social Inadequacy factor under the
non-hierarchical multidimensional model.

The general factor consists of items measuring Anxiety, Depression,
Sociability, Introversion, Trust, and Altruism. This indicates there is
a general factor that may measure Inadequate behavior. The Anxiety
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and Depression items had higher loadings on the general factor than
the Sociability, Introversion, Trust and Altruism items. The Inadequacy
domain-specific group construct showed some additional information on
Depression, the Social Inadequacy domain-specific group factor measured
additional information on both Sociability and Introversion, and the
Recalcitrance domain-specific group factor measured mainly Altruism.
Furthermore, the bifactor solution found four Recalcitrance items, one
Social Inadequacy item, and one Inadequacy item which had no acceptable
loadings on the general or domain-specific group factor.

2.5.2 Scoring of persons on constructs

For all models, individuals’ weighted factor scores (mean around zero
and varying standard deviation) were estimated using MPlus. The factor
scores were compared to simple sum scores on the scales. In both the
second-order model and the bifactor model, a general factor score with a
similar interpretation was estimated. Furthermore, the simple sum score
over all 65 items was calculated for each individual in the sample. The
simple sum score and the factor scores under the second-order model and
the bifactor model were compared to check whether the ordering of persons
is the same for the different techniques and models. The factor scores on
the general factor for the second-order model and bifactor model correlated
highly with the simple sum scores; correlations were equal to r = .95
between the sum score and the second-order model factor score, r = .93
between the sum score and the bifactor model factor score, and r = .97
between the second-order model factor score and the bifactor model factor
score. Plotting the relations showed that the relation between simple sum
score and factor scores of both models was slightly scattered around the
diagonal line for persons scoring around the mean and below the mean
(see Figure 2.2a upper and lower left panel). However, relations between
the two factor scores were clustered along a diagonal line over the whole
continuum (lower right panel). This indicates that the two factor scores
led to the same ordering of individuals, whereas the simple sum score led
to a different ordering for the low performing individuals, but not for the
high performing individuals.

Furthermore, weighted factor scores and simple sum scores were
determined for the domain-specific Inadequacy, Social Inadequacy, and
Recalcitrance factors. The uncorrelated unidimensional model, the
non-hierarchical multidimensional model and the second-order model
investigated domain-specific factors, and the bifactor model investigated
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Figure 2.2. Scatter plot comparison of latent trait estimates a) between sum score
estimates, second-order model factor score estimates and bifactor model score estimates
for the general construct, b) between sum score estimates, uncorrelated unidimensional
model factor score estimates, non-hierarchical multidimensional model/second-order
model factor score estimates and bifactor model factor score estimates for the Inadequacy
construct.
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domain-specific factors after partialing out the general factor. When the
general factor explains common variance, this might result in domain-
specific factors that measure slightly different constructs as under the
other models, whereas when the general factor explains almost no
common variance the domain-specific factors will measure the same
construct as under the other models. The factor scores on the domain-
specific factor under the non-hierarchical multidimensional model, and the
second-order model were equal resulting from equivalence of the models.
Correlations between the uncorrelated unidimensional model factor scores,
the non-hierarchical multidimensional model/second-order model factor
scores, the bifactor model factor scores, and the simple sum scores
on the domain-specific Inadequacy, Social Inadequacy and Recalcitrance
scales are shown in Table 2.6. For all three constructs, Inadequacy,
Social Inadequacy and Recalcitrance, estimated factor scores under the
uncorrelated unidimensional model, estimated factor scores under the non-
hierarchical multidimensional/second-order model and estimated simple
sum scores were highly correlated. Plotting the relations between the three
scores showed clustering of estimated scores along a diagonal line for the
Social Inadequacy and Recalcitrance scales. For the Inadequacy scale this
was only partly the case, as is shown in Figure 2.2b in the upper and
middle row. For persons around and below the mean score value, estimates
scattered around the diagonal line, which indicated a different ordering of
persons when using different models or scoring techniques. Correlations
between the estimated bifactor model factor scores and the simple sum
scores, factor scores under the uncorrelated unidimensional model, and
factor scores under the non-hierarchical multidimensional/second-order
model were moderate. Although plots of the Social Inadequacy and
Recalcitrance scales form a broad-banded line, for the Inadequacy scale
this was not the case (see Figure 2.2b; lower row); estimates scattered
around the diagonal line. This indicates that group factors under the
bifactor model did measure a slightly different construct than domain-
specific factors under an uncorrelated unidimensional model, or a non-
hierarchical multidimensional or second-order model.

2.6 Discussion

The appropriateness of the non-hierarchical multidimensional model, the
second-order model, and the bifactor model was investigated. With respect
to the NPV-J, the bifactor model fitted best, and a multidimensional factor
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Table 2.6
Correlations between simple sum scores and weighted factor scores on domain-specific
factors under all models
Inadequacy scale Simple Factor scores

sum score
UUM NHMM/ BFM

SOM
Simple sum score 1.000 0.965 0.946 0.553
Factor score UUM 1.000 0.984 0.541
Factor score NHMM/SOM 1.000 0.449
Factor score BFM 1.000

Social Inadequacy scale Simple Factor scores
sum score

UUM NHMM/ BFM
SOM

Simple sum score 1.000 0.980 0.966 0.761
Factor score UUM 1.000 0.977 0.807
Factor score NHMM/SOM 1.000 0.673
Factor score BFM 1.000

Recalcitrance scale Simple Factor scores
sum score

UUM NHMM/ BFM
SOM

Simple sum score 1.000 0.967 0.874 0.747
Factor score UUM 1.000 0.940 0.653
Factor score NHMM/SOM 1.000 0.415
Factor score BFM 1.000

* UUM = uncorrelated unidimensional model, NHMM = non-hierarchical multi-

dimensional model, SOM = second-order model, BFM = bifactor model

structure with both general and domain-specific constructs was found. The
general Inadequate Behavior factor was strong, and, as expected, consisted
of Inadequacy items, Social Inadequacy items and Recalcitrance items.
Loadings of Inadequacy items were stronger on the general factor than
loadings of Social Inadequacy items and Recalcitrance items. Under the
non-hierarchical multidimensional model and the second-order model a lot
of shared variance between the scales was found, which also indicated
the relevance of a general factor. Further, the bifactor model showed
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that some Depression items, most Social Inadequacy items, and most
Altruism items shared additional variance over and above the general
factor, and formed three domain-specific factors. It can be concluded
that part of the Inadequacy items were multidimensional, while others
were unidimensional measuring the general factor. Social Inadequacy
items were mostly multidimensional and Recalcitrance items were mostly
unidimensional, measuring the general factor or the domain-specific group
factor.

Finding the best fitting and most appropriate model for the data was not
only important for decisions on the dimensionality structure of the model
and its interpretation. Sum scores and factor scores under different models
might not always lead to the same ordering of individuals on constructs,
as was found for the general factor, and the domain-specific Inadequacy
factor. Misspecification of the model may have serious consequences for
the ordering of persons. As a consequence it may effect conclusions in a
diagnostic, classification or selection context.

Finally, the bifactor model is the most general model for analyzing
and constructing psychological instruments consisting of two or more
related constructs that might measure a more general and theoretically
interpretable construct, and some additional domain-specific constructs.
The bifactor model gives clear results on the dimensionality structure of the
instrument, the dimensionality of items, the interpretation of both general
and domain-specific factors, and the scoring of individuals. When there is
only a strong general factor and there are less important domain-specific
factors the second-order model provides similar information. When there is
no significant general factor, but only significant domain-specific factors the
non-hierarchical multidimensional model is a good alternative. The bifactor
model gives a statistically based conclusion about the appropriateness of
the non-hierarchical multidimensional model and the second-order model,
even in case of two or three domain-specific factors.
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Chapter 3

Analyzing the dimensionality
of the Students’ Conceptions
of Assessment inventory

3.1 Introduction

Assessment plays an important role in contemporary life, having
meaningful consequences in education and employment contexts. Scores,
as derived from tests, assessments, and evaluations, influence a person’s
future. While intelligence, socio-economic status, and cultural factors
are known to contribute to such scores, the role of personal beliefs and
attitudes in determining test scores is less well understood. Ajzen’s (1991)
theory of planned behavior claims that behavioral outcomes are predicted
by individuals’ intentions, beliefs about likely consequences, normative
expectations of others, and by perceptions of behavioral control (self-
efficacy beliefs). Thus, the reasons, opinions, attitudes, beliefs, and
intentions people have influence their behavioral achievement.

In education, academic achievement is influenced by students’ learning
and study behavior. In line with the theory of planned behavior, Entwistle
(1991) discussed that learning, studying, and academic achievement are
influenced by both external factors (e.g., the learning environment and
context) and interactions between students and their context. Students’

This chapter will be published as Weekers, A. M., Brown, G. T. L., & Veldkamp,
B. P. (2009). In D. M. McInerney, G. T. L. Brown, & G. A. D. Liem (Eds.), Student
perspectives on assessment: What students can tell us about assessment for learning.
Charlotte, NC: Information Age Publishing.

29



Chapter 3

perceptions of the learning environment and context and their intentions
when approaching a task have additional value to outcomes as will be
discussed below.

Since educational assessment has significant consequences for learners
(i.e., it can be used to monitor, motivate, and certify learning),
students’ perceptions of assessment seem to matter. Research has shown
that assessment influences students’ behaviors, learning, studying, and
achievement (Entwistle, 1991; Peterson & Irving, 2008; Struyven, Dochy,
& Janssens, 2005). Variation in how students perceive, understand, and
evaluate assessment has been investigated internationally.

Struyven, Dochy, and Janssens (2005) reported that university-level
students had multiple perceptions of assessment (i.e., it was inaccurate,
inappropriate, arbitrary, unfair, and irrelevant; enjoyable and beneficial;
a way to improve learning; a way to demonstrate personal growth; and a
way to achieve greater quality in learning). To ascertain important aspects
of high school students’ attitudes and beliefs about assessment, a series
of inventory survey studies have been conducted in New Zealand (Brown,
2006; Brown & Hirschfeld, 2005, 2007, 2008; Hirschfeld & Brown, 2009).

The fifth version of the Students’ Conceptions of Assessment (SCoA-V)
inventory (Brown, Irving, Peterson, & Hirschfeld, 2009) is studied in this
chapter because this version was validated on a large representative sample
of New Zealand high school students and used in a subsequent study that
related student conceptions of assessment to academic outcomes (Brown,
Irving, & Peterson, 2008). The SCoA-V inventory measures four major
inter-correlated constructs. Brown, Irving, and Peterson (2008) suggested
that the inter-correlations between the major conceptions might indicate a
more general student conception of assessment and that alternative models
of how students’ conceptions of assessment are structured needed to be
investigated. The dimensionality structure of the Students’ Conceptions of
Assessment (SCoA-V) instrument is studied in this chapter.

The chapter is organized into three main sections. First, the background
information of the inventory is addressed. Second, different models to
investigate the dimensionality of students’ perceptions of assessment are
offered. Third, the dimensionality structure of the SCoA-V is evaluated,
using two alternative measurement model structures (i.e., non-hierarchical
multidimensional and bifactoral), which results in recommendations
concerning students’ conceptions of assessment.
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3.2 Students’ Conceptions of Assessment

In order to situate this research, it is necessary to review briefly both
the international literature on students’ conceptions of assessment and the
development of the Student Conceptions’ of Assessment inventory. In a
sense, this requires us to go back in time to what we knew about students’
thinking about assessment before the New Zealand series of survey studies
was conducted. Hence, the section draws heavily on previous reviews of
the literature, reported in Brown (2008) and Brown and Hirschfeld (2007,
2008). At the same time, however, this review is able to bring in findings
from the New Zealand survey studies. The motivation for this research,
as touched on in Brown and Hirschfeld (2008), was the suggestion that
teachers’ conceptions of assessment may have their origins in the belief
systems of students (Pajares, 1992). Hence, it seemed logical to consider
the possibility that secondary school students would have similar ways of
conceiving of assessment as teachers. Thus, much of Brown’s research has
been guided by the idea that there would be some similarity between how
students and teachers conceived of assessment.

The research literature on students’ conceptions of assessment is not
vast (e.g., Harlen (2007) devotes11

2 pages to the topic) and is largely
focused on tertiary or higher education students (see Struyven, Dochy,
& Janssens, 2005 for a review). Our analysis of the previously reported
empirical studies into how students understand the purposes of assessment
has identified, four major purposes, some of which are similar to teachers’
conceptions of assessment (Brown, 2004a). First and foremost, students
are aware that assessment exists in order to improve learning and teaching.
Second, students are aware that assessment is used to evaluate external
factors outside their own control such as the quality of their schools,
their intelligence, and their future. Thirdly, the literature clearly indicates
that students are aware of an affective purpose for assessment- assessment
impacts on their emotional well-being and the quality of relationships they
have with other students. Finally, students are aware that assessment
can be an unfair, negative, or irrelevant process in their lives. To
summarize, these purposes can be expressed as simply as (a) improvement,
(b) externality, (c) affect, and (d) irrelevance.

3.2.1 Improvement

Students in the compulsory school sector (K-12) want assessment to lead
to improved learning (Peterson & Irving, 2008). Good teachers regularly
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test and provide feedback to students about learning (Olsen & Moore, 1984)
and do not hide from students uncomfortable messages about the need
to improve or the processes of improvement (Pajares & Graham, 1998).
Information that increases students’ sense of personal agency, in terms
of knowing how to earn grades that accurately describe their abilities, is
sought (Stralberg, 2006). It would appear that students do not make an
artificial distinction between summative and formative assessments; rather,
it would appear that many see all tests and evaluations as a source of
information about how they can improve (Peterson & Irving, 2008). Indeed,
improvement goes beyond informing the student; it also involves teachers
use of assessment so that students can improve (Peterson & Irving, 2008).

While some readers may be disturbed or concerned that students see
assessment in instrumental terms of higher assessment grades or scores, it
is an unavoidable fact of society that we assess students in order to discover
how much or how well they have learnt. And students are clearly aware
of this process. A number of studies have reported that students in Israel
(Zeidner, 1992), the United States (Brookhart & Bronowicz, 2003), and
the UK (Reay & Wiliam, 1999) are aware that assessment is used to judge
or evaluate student learning. Harlen (2007) suggests that higher-attaining
students tend to associate assessment with improvement.

The New Zealand survey studies have found that the use of assessment
to hold students accountable is linked to the notion of improvement. Using
version 1 of the SCoA inventory, Brown and Hirschfeld (2007) found
that a group of items related to assessment as a self-regulatory feedback
and motivational process predicted greater performance in mathematics.
Further, Brown and Hirschfeld (2008), using 11 items from version 2 of
the SCoA inventory, showed that the conception of student accountability
predicted positively students scores on a reading comprehension test. Later
versions of the inventory, as the number of items and factors was increased,
clearly embedded the notion that assessment makes students accountable
with the notion of student self-regulation (Brown, Irving, & Peterson,
2008). This self-regulation conception of improvement was also linked
strongly to the idea teachers use assessment to improve their teaching
of students (Brown, Irving, Peterson, & Hirschfeld, 2009) and together
these improvement oriented conceptions of assessment predicted higher test
scores (Brown, Irving, & Peterson, 2008).

Hence, it seems feasible to conclude that students are aware that
a major purpose of assessment is to lead to improved teaching
and improved learning, which in turn leads to improved assessment
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scores. Notwithstanding the instrumental nature of this relationship,
it seems logical that students should understand improvement in terms
of assessments that are used to make decisions such as certification,
promotion, retention, awards, and so on.

3.2.2 Externality

The beliefs students have about where control lies have an important
relationship to assessment. Students who attribute academic consequences
(i.e., assessment outcomes) to external (e.g., my teacher or my school),
unstable (e.g., luck or teacher whimsy), or uncontrollable (e.g., my
parent’s wealth or my intelligence) causes consistently do worse (Schunk
& Zimmerman, 2006). Likewise, students who believe that the locus of
control lies outside their personal control do worse academically (Rotter,
1982). Thus, it seems logical to infer that, if the purpose of assessment
is focused on an attribute external to the student (e.g., evaluation of the
school), student performance will be negatively impacted.

Thus, the question arises as to whether students are aware that
assessments have a strong external component. Peterson and Irving (2008)
conducted a series of focus group studies with New Zealand high school
students and found considerable evidence for an external component in
students’ understandings of assessment. For example, they reported (p.
244) that ”several students ascribed their poor grades to the teacher
”being mean” or the teacher ”doesn’t like me”. In the same study,
students in middle and higher socio-economic communities indicated that
assessment was primarily for their parents who may punish them for
unacceptable grades. Similarly, the New Zealand high school students
believed assessment cast a shadow over their personal futures; grades are
used by future employers, and may help them avoid bad jobs. This study
specifically inspired, the development of items around the externality in the
SCoA inventory.

The national survey of secondary school students (Brown, Irving,
Peterson, & Hirschfeld, 2009) found that assessment as a measure of school
quality and of external factors such as intelligence, parents, and jobs were
highly related. Furthermore, the students gave nearly moderate levels of
agreement towards these two factors. The subsequent study (Brown, Irving,
& Peterson, 2008) reported a very similar structure of beliefs concerning
externality and, more importantly, showed that the joint external factors
had negative impact on academic performance in mathematics. This
result is consistent with the research on control beliefs, such as attribution
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theory (Weiner, 1985) and the self-determination theory (Ryan, Connell,
& Deci). It would appear that the more students believe that the purpose
of assessment is related to external factors outside their control the worse
they do in school.

3.2.3 Affect

A matter of great concern to educators has been the emotional impact of
assessment on students (Linn & Gronlund, 2000). This is motivated partly
by concern for the well-being of young people (e.g., Weeden, Winter, &
Broadfoot, 2002) and the validity of test scores-too much anxiety or distress
is bad for children and invalidates interpretations based on sub-optimal
student performance. Younger students appear to enjoy a wide variety of
assessment methods (Atkinson, 2003). Even relatively formal, though low-
stakes, paper-and-pencil tests have been seen by high school students as
being enjoyable (Hattie, Brown, Ward, Irving, & Keegan, 2006). Harlen
(2007, p. 42) suggests that students positively evaluate tests because tests
give ”clear-cut measures of progress based on ’right or wrong”’. Perhaps
students prefer the system of assessment that they experience, regardless of
the merits or deficiencies of that system (Blaikie, Schönau, & Steers, 2004).
Nonetheless, there is some consensus that as students progress through
schooling they become increasingly disaffected by assessment (Harlen, 2007;
Moni, van Kraayenoord, & Baker, 2002).

Brown and Hirschfeld (2007) reported that a small sample of New
Zealand high school students had a moderate level of agreement that
assessment could be enjoyable and improve the social climate of the class.
Brown and Hirschfeld’s (2008) survey with version 2 of the SCoA found
that a large (N = 3504) sample of students had less than slight agreement
towards the same factor. A national survey of 700 New Zealand secondary
school students using version 5 of the SCoA inventory with an extended
number of items for both classroom benefit and personal enjoyment, found
that the two factors were strongly inter-correlated and elicited slight to
somewhat negative agreement (Brown, Irving, Peterson, & Hirschfeld,
2009). In all the New Zealand studies, the affect factors had negative
relations towards scores of mathematics or reading comprehension. In other
words, the more students enjoyed assessment or the more they believed
assessment improved classroom relations, the worse they did academically.
Hence, it could be argued increased positive emotion towards assessment is
a counter-productive purpose for assessment.
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3.2.4 Irrelevance

Assessment may be considered irrelevant by students if they think of it as
being bad or unfair or tainted with teacher subjectivity. Furthermore, many
students, especially lower-performing ones, disregard or ignore assessment
results. A small group of Australian high school students were negative
towards assessment because of the volume of assessment and because they
perceived teacher’s decisions as subjective (Moni, van Kraayenoord, &
Baker, 2002). A group of urban African American and Latino high school
seniors perceived the high-stakes university entrance tests they were about
to undertake as unfair because of their impact upon student life chances
(Walpole, McDonough, Bauer, Gibson, Kanyi, & Toliver, 2005). Peterson
and Irving (2008) reported that the New Zealand high school students saw
assessment as irrelevant if their career aspirations did not require academic
success. The same students also insisted that assessments were unfair unless
”you had to complete it by yourself, under controlled conditions, without
any assistance or second chance” (Peterson & Irving, 2008, p. 245). A
consequence of this last belief was that peer assessment, specifically, was
considered irrelevant since interpersonal factors contaminated the validity
of peer feedback.

The SCoA inventory studies have consistently identified factors related
to the negative nature of assessment. In version 1, the conception that
assessment interfered with learning was not agreed with; however, increased
agreement had a negative impact on mathematics performance (Brown &
Hirschfeld, 2007). In version 2, students again rejected the notion that
they ignored assessment and increased agreement had a negative impact on
reading performance (Brown & Hirschfeld, 2008). In version 5, the national
sample rejected the conception of ignoring assessment and treating it as
irrelevant (Brown, Irving, Peterson, & Hirschfeld, 2009). Interestingly, the
more students agreed with ignoring assessment, the more likely they were to
think of informal-interactive assessment practices (i.e., self assessment, peer
assessment, portfolios, etc.); a result which was replicated in the follow-up
study (Brown, Irving, & Peterson, 2008).

Thus, it would appear that students are quite sensitive to assessments
which they perceive to be unfair, bad, or irrelevant to them. The irrelevance
of assessment does not appear to be a permanent attitude; rather it appears
to be a response to the appearance of subjectivity, disparity, and inequity.
The New Zealand survey studies consistently report that students reject
this conception and it has no direct relationship to academic performance.
Nonetheless, students appear to consider some kinds of assessment as
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worthy of being ignored; a result which should be of some concern to those
advocating a reduced emphasis on examinations or tests in educational
assessment.

3.3 Background to the Students’ Conceptions of
Assessment Inventory

The Students’ Conceptions of Assessment (SCoA) inventory is a self-
rating instrument in which high school students indicate the extent to which
they agree or disagree with statements about the purposes of assessment.
Brown and Hirschfeld (2007) trialed the first version of the inventory
(SCoA-I) in 2003 as four independent parts to mitigate potential participant
fatigue. Four purposes of assessment were identified (i.e., ”assessment
makes schools and students accountable”, ”assessment improves teaching
and learning”, ”assessment is negative or bad”, and ”assessment is useful”).

With the second version of the inventory (SCoA-II), four conceptions
(i.e., ”assessment makes schools accountable”, ”assessment makes students
accountable”, ”assessment is fun”, and ”assessment is ignored”) were
estimated simultaneously in a survey conducted in 2004 with nearly 3500
high school students (Brown & Hirschfeld, 2008). Three conceptions
were correlated highly with each other, while the ”assessment is
ignored” conception was weakly and negatively correlated with the same
three conceptions. In an invariance study of the SCoA-II inventory,
Hirschfeld and Brown (2009) concluded that the instrument had invariant
measurement properties across sex, year level, and ethnicity.

In further extending the meaning of students’ conceptions of assessment
with two progressively more complete inventories (SCoA-III: Brown
& Hirschfeld, 2005; SCoA-IV: Brown, 2006) students were asked to
also indicate what types of assessment practices they associated with
the term ’assessment’. Two major classes of assessment types were
found (i.e., teacher-controlled test-like assessments and informal-interactive
assessments). In the SCoA-IV, six inter-correlated conceptions of
assessment were found (i.e., ”assessment makes students accountable”, ”I
use assessment”, ”teachers use assessment”, ”the public uses assessment”,
”assessment is fun”, and ”assessment is irrelevant). All conceptions,
except ”assessment is irrelevant”, had weak correlations with the interactive
assessment type. Furthermore, five of the conceptions were positively inter-
correlated, while the ”assessment is irrelevant” conception was weakly and
negatively correlated with all the other conceptions.
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In a national survey of high school students conducted in 2006,
the fifth version of the inventory (SCoA-V) was used to establish the
structure of student conceptions of assessment and their relations to
assessment type (Brown, Irving, Peterson, & Hirschfeld, 2009). Four major
2nd-order conceptions were found (i.e., ”assessment improves learning”,
”assessment makes students and schools accountable”, ”assessment is
beneficial”, and ”assessment is irrelevant”). Three of the four major
conceptions were strongly and positively inter-correlated, while ”assessment
is irrelevant” was again weakly (indeed, not statistically different to
zero for path to ”assessment is beneficial”) and negatively related to
those three conceptions. The conception ”accountability/external factors”
measures lack of personal autonomy or control, divided into the degree
to which assessment measures a fixed personal future or it measures school
quality. The conception ”affect/benefit” measures the affective or emotional
impact of assessment and consists of assessment as a personally enjoyable
experience and assessment as a benefit to the class environment. The
conception ”improvement” indicates that the goal of assessment is to
improve students’ own use of assessment to improve learning and teachers’
use to improve teaching. The conception ”irrelevance” measures a negative
evaluation of assessment because it is seen as bad, subjective, or unfair and
whether it is tolerated but ignored. Each conception was divided into two
1st-order sub-conceptions which were used in a structural model to establish
relations to assessment types. There was one additional pathway from
”assessment is irrelevant” to the 2nd-order conception ”personal enjoyment”.

Most recently, the SCoA-V inventory was used in 2007 to investigate the
beliefs of three cohorts of high school students in relation to their definitions
of assessment and their performance in mathematics (Brown, Irving, &
Peterson, 2008). This study developed a sixth version of the inventory
(SCoA-VI) by revising the measurement model only. In the SCoA-VI the
items are identical to SCoA-V but all four 2nd-order conceptions were inter-
correlated and the pathways from the 2nd-order conceptions to the 1st-order
conceptions were simplified. The pathway from ”assessment is ignored”
to ”personal enjoyment” was removed to attain structural simplicity and,
as a consequence, the 1st-order sub-conception ”assessment is ignored”
generated negative error variance. Hence, all the items were given paths
directly to the 2nd-order conception ”assessment is irrelevant”. This revised
solution was configurally invariant for both SCoA-V and SCoA-VI samples.
Again the inter-correlations were strongly positive for three of the 2nd-order
conceptions, while the arcs from ”assessment is irrelevant” were negative
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and weak to moderate.

3.4 Dimensionality of the SCoA inventory

Research into students’ conceptions of assessment has identified
four major categories of students’ thinking concerning the purposes of
assessment. There is also strong evidence that students’ conceptions
influence considerably their academic performance (explained variance in
test scores ranges from 20 to 25%). Further, there is evidence that these
conceptions are meaningfully aligned with theories of self-regulation, self-
determination (Ryan, Connell, & Deci, 1985), and attribution (Weiner,
1985) in explaining how the beliefs translate into outcomes. Furthermore,
research with the SCoA inventory has reported stable results with multiple
samples of New Zealand high school students.

The SCoA inventory, in its current form, consists of multiple inter-
correlated factors with hierarchical structure containing eight 1st-order
factors, and four correlated 2nd-order factors. This structure is a
consequence of the developmental process-measures for each sub-conception
were developed within a conceptual framework that the sub-conceptions
were members of four higher-order structures. Further, one conception
(i.e., ”assessment is irrelevant”) is always weakly and negatively correlated
with the other conceptions. However, independent examination of the
dimensionality structure of the SCoA inventory has not been carried out.

The highly positive inter-correlations between the major conceptions
”external factors”, ”positive affect”, and ”improvement”, and the
more variable, but in general moderate negative inter-correlations with
”irrelevance” suggested some overlap between the conceptions (Brown,
Irving, Peterson, & Hirschfeld, 2009). Conceptually, the three conceptions
”external factors”, ”positive affect”, and ”improvement” all suggest a
positive and important influence of assessment on the studying and learning
context of students. Students might experience that assessment in general
leads to positive feelings and a positive environment. The conception
”irrelevance” might suggest unimportant, invaluable or no impact on the
study and learning context. As such, ”Irrelevance” measures a negative
contrary conception of the other three conceptions. Students might
interpret the four conceptions as four separate constructs that share some
information, however another option is that students see just the positive
impact on their studying and learning context in general, which might be
expressed in a general conception. Besides the in general positive impact it
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might be possible that some items give specific information about reasons
or situations when assessment has positive influences, like that assessment
”improves learning”, ”provides positive external factors”, ”is beneficial” or
”is not irrelevant”.

The estimated model in Brown et al. (2009), shows reasonable to
high correlations between the four 2nd-order conceptions. This might
methodologically suggest a general students’ conception of assessment.
When there are high correlations among constructs it is possible that a
general factor is dominating item responses (Chen, West, & Sousa, 2006;
Reise, Morizot, & Hays, 2007; Yung, Thissen, & McLeod, 1999). Although
coherence between the four major conceptions and the multiple studies
existed, no further research has been done to investigate the relations
between the conceptions. It is important to investigate which model is
most appropriate to describe the inventory, because different models might
result in different interpretations of the inventory, and persons might be
ordered on the continuum differently when using other models or scoring
techniques (see Chapter 2).

Relations between constructs can be modelled in two ways; as non-
hierarchical structures, and as hierarchical structures. Non-hierarchical
structures describe constructs that are on the same level, and of the same
order. The constructs might be correlated. The most common non-
hierarchical structures are measurement models, which describe different
constructs each measuring a separate concept. These constructs might
be correlated (non-hierarchical multidimensional model) or uncorrelated
(uncorrelated unidimensional model). For example consider an instrument
that measures the five factors of the Big Five. There are five separate
constructs of the same order and these are on the same level, and can be
modelled as correlated or not correlated. Hierarchical structures consist of
both constructs that are more general, and constructs that are less general.
The general and specific constructs might be on the same level, but can be
on different levels as well. The most commonly used hierarchical models are
the higher-order model and the bifactor model. The higher-order model is a
structural model that describes constructs on different measurement levels,
namely domain-specific constructs and general constructs. The domain-
specific constructs are on the same level and predict items. The higher-
order general construct is on a different, more general, level and does not
predict items directly, but does predict the domain-specific constructs, via
which items are predicted. For example an intelligence test that measures
verbal intelligence and spatial ability, but also measures the higher-order
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construct general intelligence that predicts both verbal intelligence and
spatial ability. The bifactor model is a measurement model consisting of
both general and domain-specific constructs, which are on the same level.
Under this model items are multidimensional, because they are predicted
by both domain-specific and general factors. The general construct of the
bifactor model has a similar interpretation as the general construct of the
higher-order model. An example is an inventory that consists of items
about motivation in different contexts (i.e. school, sports). The items
measure both motivation in general (general construct) and motivation in
the domain-specific context (e.g., school and sports).

In this chapter two models will be used to analyze the SCoA-V
data; the non-hierarchical multidimensional model and the bifactor model.
There are four reasons for choosing these two models. First, both types
of modeling relations, non-hierarchical and hierarchical modeling, are
investigated. Second, both models are measurement models, and thus
the different conceptions predict the items directly, and not via other
constructs as is the case in for example higher-order models. Third,
there is sufficient information that the conceptions are related; therefore,
the non-hierarchical multidimensional model is estimated instead of the
uncorrelated unidimensional model. And fourth, the bifactor model is more
general than the higher-order model, in the sense that the higher-order
model only estimates a general conception, via domain-specific conceptions,
whereas the bifactor model both estimates a general conception, and
domain-specific conceptions that provide extra information besides the
general factor. The models used, the interpretation of the models, and
scoring of persons on the models’ conceptions, will be explained in more
detail below.

3.5 Method

3.5.1 Instrument

The fifth version of the Students’ Conceptions of Assessment inventory
(SCoA-V) consists of 33 items (for item content, see Appendix) selected on
the basis of content and factor analytic studies. The items measure four
major conceptions, ”external factors” [6 items], ”affect/benefit” [8 items],
”improvement” [11 items], and ”irrelevance” [8 items].

Students indicated how much they agreed with the 33 statements on
a six-point positively-packed agreement rating scale, with two negative
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responses (strongly disagree, mostly disagree), and four positive responses
(slightly agree, moderately agree, mostly agree, strongly agree). This
response format was chosen, because students were inclined to respond
positively to all items, and positively-packed rating scales generate greater
variance and precision (Brown, 2004b; Klockars & Yamagishi, 1988; Lam
& Klockars, 1982).

3.5.2 Participants and Procedure

Respondents were 705 students from 31 secondary schools in New
Zealand, enrolled in Years 9 and 10 (the first two years) of secondary
school. About half of them were boys (n = 342; 48.5%) and students
were between 13 and 15 years of age, with a mean age of 14.14 (SD = .96).
The students filled out the inventory about their conceptions of assessment
during a single lesson supervised by a teacher.

3.5.3 Analyses

This study investigates the dimensionality structure of the SCoA
by comparing two measurement models (i.e., non-hierarchical multi-
dimensional model, and bifactor model). The uncorrelated unidimensional
model (Figure 3.1a) is used as a baseline against which the non-hierarchical
multidimensional model (Figure 3.1b) and the bifactor model (Figure 3.1c)
are compared. The expectation is that the uncorrelated unidimensional
model does not fit the data. Because some complex models cannot be
estimated when the number of items loading on a factor is low (i.e., sets of
items smaller than 3), and because the 1st-order factors of each conception
were highly correlated, all analyses were conducted without the 1st-order
factors of the model by Brown, Irving, Peterson, and Hirschfeld (2009). In
other words, all items were treated as being directly predicted by the four
major conceptions of assessment reported by the SCoA inventory.

The uncorrelated unidimensional model consists of four separate
unidimensional latent factors. Each latent factor in the model measures
one major conception; ”external factors”, ”affect”, ”improvement”,
or ”irrelevance” and each item is predicted by one conception only.
Correlations between the conceptions were set to zero, but the latent
factors were simultaneously estimated. The interpretation of this model
is that students’ conceptions of assessment can be described best by four
separate conceptions, which do not have any shared variance or overlap.
The persons can be ordered on each of the four conceptions based on a
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weighted sum score, in which the factor loadings could be used as weights.
This model is not likely to fit well because there is considerable evidence
in the development of the SCoA that the conceptions are inter-correlated.

Second, the non-hierarchical multidimensional model was investigated.
The four major conceptions ”external factors”, ”affect”, ”improvement”,
and ”irrelevance” were measured by four latent factors, which were
allowed to correlate with each other. All items measure one conception
only. Although it might be reasonable to expect that some factors
have zero correlations with some other factors, a full non-hierarchical
multidimensional model was investigated. In a full non-hierarchical
multidimensional model it is hypothesized that each factor is non-zero
correlated with every other factor in that measure. This model is similar
to the models reported on the SCoA-V and SCoA-VI, except for that the
eight sub-conceptions are not in the model, for reasons outlined earlier.
The interpretation of this model would be that students’ conceptions can
be described best by four separate conceptions, which are related to each
other. The different conceptions share information. For scoring the persons
on one of the factors, both the weights of the items and the correlations
between the factors have to be taken into account.

Third, the bifactor model (Figure 2c) was investigated. The bifactor
model specifies both general and (domain-specific) group factors. The
general factor is an overall measure of students’ conceptions of assessment.
All 33 items are predicted by this general factor. The general factor
explains the common variance between items of different conceptions,
and explains the item inter-correlations of all items. The four group
factors (i.e., ”external factors”, ”affect”, ”improvement”, and ”irrelevance”)
are additional to the general factor, and measure the shared variance
between items of the same conception after partialing out the general
factor. The four group factors, thus, measure what is left of the four
different conceptions, after controlling for the general factor. All items
have two loadings; one loading on the general factor and one loading on
the group factor. Because items are predicted by two latent factors they
are assumed to be multidimensional. Correlations between the general
factor and the group factors were fixed at zero, so that the five factors were
independent of each other. If there are meaningful item factor loadings on
both general factor and group factors, the interpretation of the model would
be that students’ conceptions can be described best by five conceptions, one
general student conception and four domain-specific conceptions. Scoring
of persons is done on both general and group factors by factor scores, which
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Figure 3.1. Models analyzed in this study: a) uncorrelated unidimensional model, b)
non-hierarchical multidimensional model, and c) bifactor model.
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indicate the position of a person on the general conception, and a position
on the four domain-specific conceptions. The interpretation of the four
domain-specific conceptions is different from the interpretation of the four
conceptions under the non-hierarchical multidimensional model. The four
conceptions under the bifactor model describe the position of a person on
a scale that is more restricted than the scales under the non-hierarchical
multidimensional model. In a sense the scores are dependent on the general
factor, because they measure what is explained besides the variance on the
general factor. If the loadings on the general or the group factors are
low, the interpretation will be different. If only significant loadings on
the general factor are found, only the general factor describes the data,
and persons can be ordered on the general factor only. If only significant
loadings on domain-specific group factors are found, the interpretation will
be similar to the interpretation under the non-hierarchical multidimensional
model.

MPlus (Muthén & Muthén, 1998-2006) was used to estimate all models
using Weighted Least Squares Mean Adjusted (WLSM) estimation derived
from polychoric correlations. This is different from previous studies
which were conducted using AMOS (Arbuckle, 2007) using maximum
likelihood estimation derived from Pearson product moment correlations.
The general recommendation analyzing categorical responses is to use
polychoric correlations (Jöreskog, 2007). However, it is not necessary to
assume that the ordered response options (i.e., strongly disagree, mostly
disagree, slightly agree, moderately agree, mostly agree, and strongly agree)
used in this inventory represent discrete categories of response. Lam and
Klockars (1982) showed through a scaling study on the desirability of
terms that the terms fair, good, very good, and excellent were equally
spaced from each other and that respondents used the rating anchors in
responding to items. Klockars and Yamagishi (1988) reported that the
scale distance between fair and good is constant whether the words are
used in balanced or packed rating scales. Hattie (personal communication,
February, 1999) reported unpublished research (similar in method to that of
Lam & Klockars, 1982) which indicated that the following adverbs would
provide nearly-equal intervals on an underlying scale of agreement (i.e.,
strongly, mostly, moderately, and slightly). Respondents tend to treat
adverbs as symmetrical when used in positive and negative sides of neutral;
hence, strongly and mostly would have equivalent values when applied to
agree and disagree (Smith, Mohler, Harkness, & Onodera, 2005). Thus,
there is support for the analysis of the six points used in this rating scale
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as points on a continuous, rather than ordinal scale. If this assertion
is accepted, then the use of the Pearson product moment correlations is
legitimate. Nonetheless, in this study, the more conservative approach
(polychoric correlations) is taken, and it should be noted that the quality
of fit is likely to be negatively impacted by this approach.

Given the large number of participants and the complexity of models
being evaluated, it is important to select appropriate fit statistics and cut-
off values. Fan and Sivo (2007) have demonstrated that the standardized
root mean squared residual (SRMR) and gamma hat statistics are most
resistant to sample size, model complexity, and model misspecification
(an issue being directly tested here). Nonetheless, multiple statistics
(i.e., χ2, comparative fit index (CFI), Tucker-Lewis index (TLI), and
root mean squared error of approximation (RMSEA)) are reported in
accordance with best practice (Fan & Sivo, 2005). Cutoff criteria are
conventionally set at .95 for CFI, TLI and gamma hat, .08 for SRMR,
and .06 for RMSEA (Hu & Bentler, 1999); though Marsh, Hau, and Wen
(2004) have argued that goodness-of-fit values > .90 indicate adequate
model fit. Furthermore, factor loadings, correlations and residual variance
were studied. Standardized regression weights λ ≥ .35 are considered
an adequate indicator that the item is well predicted by the latent trait
(Stevens, 1992). When items have a loading of ≥ .35 on only one factor
they are considered unidimensional, and when item loadings are ≥ .35 on
two factors they are treated as multidimensional.

3.6 Results

Measurement model fit statistics are shown in Table 3.1 and item factor
loadings are shown in Table 3.2.

The uncorrelated unidimensional model did not fit the data, since values
for fit statistics did not approach the cutoff criteria. The non-hierarchical
multidimensional model and the bifactor model had mixed-message fit
values. The CFI and TLI values were > .90 and SRMR values were < .08.
However, the more robust gamma hat values were considerably below the
cutoff criteria and the RMSEA values were above even Steiger’s (2000)
generous cutoff criterion of .10. Of these two models, the non-hierarchical
multidimensional model fit statistics were closest to the cutoff criteria.
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Table 3.1
Fit statistics Students’ Conceptions of Assessment data

Model χ2(df) χ2/df CFI TLI RMSEA SRMR
∧
γ

p-value
UUM 27750.53 56.06 .60 .57 .28 .22 .30

(495) <.01
NHMM 4592.01 9.39 .94 .94 .11 .07 .74

(489) <.01
BFM 5167.21 11.18 .93 .92 .12 .07 .71

(462) <.01
* UUM = uncorrelated unidimensional model, NHMM = non-hierarchical multidimensional

model, BFM = bifactor model

3.6.1 Baseline Uncorrelated Unidimensional Model

Under the uncorrelated unidimensional model conceptions strongly
predicted items (i.e., λ ≥ .60 on external factors, λ ≥ .61 on affect,
λ ≥ .57 on improvement, and λ ≥ .54 on irrelevance; λ is a factor loading).
Thus, items were adequately predicted by the latent constructs they were
conceptually related to and the constructs had strong measurement scales.

3.6.2 Non-Hierarchical Multidimensional Model

Results under the non-hierarchical multidimensional model showed
factor loadings of λ ≥ .53 for external factors, λ ≥ .62 for affect,
λ ≥ .55 for improvement, and λ ≥ .54 for irrelevance. Although, some
loadings increased compared to the regressions under the uncorrelated
unidimensional model, other loadings decreased. The correlations between
the three positive students’ conceptions of assessment constructs were high
(i.e., r = .56 between external factors and affect, r = .71 between external
factors and improvement, and r = .56 between affect and improvement).
Relations between irrelevance and the other three constructs were all
negative, as was expected. The correlation with improvement was highly
negative (r = −.58), the correlations with external factors and affect were
weakly negative (r = −.19, and r = −.13 respectively).

3.6.3 Bifactor Model

The bifactor model resulted in estimates of factor loadings for both the
general factor and the group factors. The general factor is a plausible
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factor since loadingss were ≥ .35 for all improvement items, most external
and affect items, but only one irrelevance item. The factor loadings were
highest among the improvement items, suggesting this conception reflects
the dominant dimension in the general factor.

Most improvement and irrelevance items measured one conception only;
the general conception or the group conception respectively. However,
although the loadings were < .35, all the items measuring ”student
self improvement” had positive values on the improvement group factor;
whereas the items measuring ”teacher improvement” had negative loadings
from the improvement group factor. This indicated that possibly, after
taking into account their common variance, the improvement group was
internally multidimensional.

Within the dominant pattern that the items within the improvement
and irrelevant conceptions were primarily related to one construct, there
were two exceptions. One improvement item had a strong loading from
the improvement group factor (i.e., an item measuring the student ”self
improvement” sub-conception). This item (Imp1) indirectly focused on
learning and studying (i.e., I pay attention to my assessment results in
order to focus on what I could do better next time), in contrast to items
that more directly focus on learning and studying (e.g., Imp10: I make
use of the feedback I get to improve my learning; and Imp19: I use
assessment to identify what I need to study next). Among the irrelevance
items, one item (i.e., Irr29: I ignore or throw away my assessment results)
had a factor loading > .35 for both the general and the group factor.
Interestingly, this item has a double action embedded in it-both ignoring
and actively throwing away information. This is in contrast to other items
in the irrelevance group (e.g., Irr32: Assessment has little impact on my
learning or Irr7: Assessment is ignored) which have only one concept. This
additional verb–being an active rejection of the improvement process– may
partially explain why the item is predicted by the general factor, as well
as the irrelevance group factor. Hence, content analysis of these two items
provided some insight into their discrepant behavior.

In contrast to the improvement and irrelevance items, most external
factors items and most affect items had factor loadings ≥ .35 on both
general and group factor and are, thus, clearly multidimensional. Most
external factors items had similar loadings for the general and group factors.
Most affect items, were strongly predicted by both the general and group
factors. The six ”class affect” items were more strongly predicted by the
group factor than the general factor, whereas the ”personal enjoyment”
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items were more strongly predicted by the general factor than the group
factor. The factor loadings of affect items for the general and group factor
were most alike when loadings on the general factor were somewhat higher,
while the values were reasonably different when loadings on the group factor
were higher.

The bifactor analysis showed that the improvement items were mainly
predicted by the general factor and the ”irrelevance” group factor predicted
the irrelevance items. The affect group factor strongly predicted the affect
items which were simultaneously predicted by the general factor. Likewise,
the external factor items were predicted by both the general and group
factors. Items that were predicted by both general and group factors had
similar factor loadings or had far higher values for the group factor than
the general factor. Improvement items were predicted more strongly by the
general factor than affect and external factor items. Hence, the bifactor
model solution showed that there are four different factors rather than five
factors.

3.7 Discussion

Three models were used to evaluate the dimensionality of the SCoA-
V inventory. The bifactor and non-hierarchical multidimensional models
showed better fit than an uncorrelated unidimensional baseline model.
Although, both the bifactor and non-hierarchical multidimensional models
modeled relations between items of different conceptions, the non-
hierarchical multidimensional model fitted better. Indeed, the bifactor
analysis largely corroborated the non-hierarchical multidimensional model
results, in that the general factor consisted mainly of improvement
items and was, thus, not truly representative of a general conception of
assessment. Although the external factor and affect items were predicted
by both the group and general factors, it was clear they were more strongly
predicted by their respective group factors than the general factor. Hence,
it is defensible to conclude that the two group factors explained these
items. This was even clearer for the irrelevance items, which were strongly
predicted by only the group factor.

Based on these results, we conclude that the SCoA items consist of four
correlated but distinct dimensions. The dimensionality structure of the
Students’ Conceptions of Assessment inventory can be best described by a
non-hierarchical multidimensional model. Furthermore, it seems that the
improvement factor is a more general construct than the other constructs
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which seem more specific. This might be the reason for the shared variance
of the improvement items with the affect and external factors items.

When predicting other external factors (e.g., academic performance
or achievement) or when scoring persons on the conceptions, the non-
hierarchical multidimensional model can be used, instead of a model
requiring a general factor. When scoring individuals it is important to
use estimated factor scores based on the non-hierarchical multidimensional
model. As Chapter 2 showed, using simple sum scores on the domain-
specific constructs might result in different ordering of persons, especially
at the extremes of the continuum, which might lead to misspecification in
a selection or classification context.

Note that in this study only the four major conceptions are used, and
that the eight sub-conceptions were not taken into account. The model
with four major conceptions and eight sub-conceptions as found by Brown,
Irving, Peterson, and Hirschfeld (2009) has been estimated using MPlus
(Muthén & Muthén, 1998-2006), resulting in values for fit statistics of
χ2(df) = 3797.585(481), and χ2/df = 7.90, with a p-value of < .01,
CFI= .95, TLI= .95, RMSEA= .10, SRMR= 0.07, and gamma hat = .77.
This multidimensional second-order model fitted slightly better than the
non-hierarchical multidimensional model. One potential reason for the
better fit of the multidimensional second-order model is that the model was
more complex and permitted the sub-factors to behave more independently
than the non-hierarchical multidimensional model in this paper, which
forced the sub-factors to act together. However, to take into account
the sub-conceptions when analyzing the full dimensionality structure of
the instrument, prediction of external factors, and scoring of persons, it is
important that each (sub)-conception contains enough items. It might be
relevant to extend the number of items especially for the sub-conceptions
containing four or less items.

While not able to fully test the sub-structure under all models, there are
indications in the bifactor analysis that suggest item multidimensionality
within the improvement and affect conceptions. Nevertheless, this study
has shown that the current modeling of the SCoA as four inter-correlated
conceptions is supported. This implies that the independent effects of the
various conceptions upon academic performance are not artefactual but
rather real structural relations. Researchers should have confidence in using
the SCoA-V inventory in studies of student thinking about assessment.
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Appendix

The Students’ Conceptions of Assessment inventory
Item Conception Sub-conception
01 I pay attention to my assessment

results in order to focus on what I
could do better next time

Improvement Self

02 Assessment encourages my class to
work together and help each other

Affect Class

03 Assessement is unfair to students Irrelevant Bad
04 Assessment results show how

intelligent I am
External Factors Personal Future

05 Assessment helps teachers track my
progress

Improvement Teacher

06 Assessment is an engaging and
enjoyable experience for me

Affect Self

07 I ignore assessment information Irrelevant Ignore
08 Assessment is a way to determine how

much I have learned from teaching
Improvement Teacher

09 Assessment is checking off my progress
against achievement objectives and
standards

Improvement Teacher

10 I make use of the feedback I get to
improve my learning

Improvement Self

11 Assessment provides information on
how well schools are doing

External Factors External Quality

12 Assessment motivates me and my
classmates to help each other

Affect Class

13 Assessment interferes with my
learning

Irrelevant Bad

14 I look at what I got wrong or did
poorly on to guide what I should learn
next

Improvement Self

15 I use assessments to take responsibility
for my next learning steps

Improvement Self

16 Assessment results predict my future
performance

External Factors Personal Future
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The Students’ Conceptions of Assessment inventory (continued)
Item Conception Sub-conception
17 Our class becomes more supportive

when we are assessed
Affect Class

18 Teachers are over-assessing Irrelevant Bad
19 I use assessment to identify what I

need to study next
Improvement Self

20 Assessment is important for my future
career or job

External Factors Personal Future

21 When we do assessments, there is
good atmosphere in our class

Affect Class

22 Assessment results are not very
accurate

Irrelevant Bad

23 My teachers use assessment to help
me improve

Improvement Teacher

24 Assessment measures the worth or
quality of schools

External Factors External Quality

25 Assessment makes our class cooperate
more with eachother

Affect Class

26 Assessment is valueless Irrelevant Bad
27 Teachers use my assessment results to

see what they need to teach me next
Improvement Teacher

28 When we are assessed, our class
becomes more motivated to learn

Affect Class

29 I ignore or throw away my assessment
results

Irrelevant Ignore

30 Assessment shows whether I can
analyse and think critically about a
topic

Improvement Teacher

31 I find myself really enjoying learning
when I am assessed

Affect Self

32 Assessment has little impact on my
learning

Irrelevant Ignore

33 Assessment tells my parents how
much I’ve learnt

External Factors Personal Future
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Scaling Response Processes
on Personality Items using
Unfolding and Dominance
Models

Personality trait assessment plays an important role in several fields
of applied psychology and it has important diagnostic, classification, and
selection consequences. For example, besides cognitive tests and job
knowledge questionnaires, personality inventories are used to predict future
job performance and future job satisfaction, and several studies showed
substantial validities for personality variables across occupations (e.g., Ozer
& Benet-Martinez, 2006).

Self-report inventories are often used to assess personality traits and item
analysis is an essential part in the construction of these inventories. In the
past, construction of self-report inventories mainly relied on optimizing
internal consistency reliability by selecting items with high item-test
correlations and by using factor analysis. Recently, however, item response
theory (IRT) models have been increasingly used to analyze self-report
personality data. The advantages of IRT models to analyze test data
compared to classical approaches have been described in many sources (e.g.,
Embretson & Reise, 2000).

This chapter has been published as Weekers, A. M. & Meijer, R. R. (2008). Scaling
response processes on personality items using unfolding and dominance models: An
illustration with a dutch dominance and unfolding personality inventory. European
Journal of Psychological Assessment, 24, 65-77.
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In IRT models the probability of endorsing an item (i) is specified
by the item response function (IRF) or item characteristic curve (ICC),
which relates the probability of endorsing an item to a person’s latent
trait level (denoted as θ). Almost all studies that apply IRT models in
the personality domain (e.g., Meijer & Baneke, 2004; Reise & Waller,
2003) use models that assume that a dominance process underlies item
responding. That is, it is assumed that the higher someone’s score on the
latent trait, the higher the probability of endorsing an item. For example,
when measuring depression by means of items like ”I am often down in the
dumps” it seems reasonable to assume that the more depressed someone is,
the higher the probability that he or she will endorse this item. Recently,
however, Chernyshenko, Stark, Chan, Drasgow, and Williams (2001) and
Stark, Chernyshenko, Drasgow, and Williams (2006) showed that the IRFs
of some items of the 16 Personality Factor Questionnaire (16PF, Conn &
Rieke, 1994) cannot be described by monotonically increasing IRFs. Meijer
and Baneke (2004) reported similar findings for the depression content scale
of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2, Butcher,
Dahlstrom, Graham, Tellegen, & Kaemmer, 1989). Chernyshenko et
al. (2001) and Meijer and Baneke (2004) found that the probability of
endorsing an item sometimes decreased at the higher end of the trait
continuum, whereas Stark et al. (2006) found that the IRFs for some
items were single-peaked. These results indicate that response processes
on self-report inventories may be different from what is expected under
dominance models. As an alternative Stark et al. (2006) proposed ideal-
point response processes and unfolding models to describe item responding
(see also Roberts, 2001; Roberts, Laughlin, & Wedell, 1999). In an ideal
point response process both persons and items are located on a continuum
representing the trait of interest, and a person endorses an item only if the
persons’ latent trait value is located near the item location on the latent
continuum. This assumption leads to nonmonotonic, single-peaked IRFs.

Stark et al. (2006) discussed that fitting the correct model to empirical
data has important consequences in a personnel selection context. They
showed that misspecification of the item response process for only a few
items in the scale had serious consequences for the ordering of persons
according to their latent trait scores. If, say, the top 10% or 20% highest
or lowest scoring applicants are selected, this greatly affects who is being
selected.

Besides the studies cited above, there has been very little experience with
the use of other models than dominance models. Because inadequately
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describing the response process on self-report inventories may result in
wrong decisions, it is important to investigate which models best describe
self-report inventory data. In the present study we extended the study
by Stark et al. (2006). More specifically, the aim of this study was to
(1) explore the usefulness of different IRT models to describe self-report
personality data and (2) compare results obtained from dominance and
unfolding IRT models.
4.1 Dominance and Unfolding IRT Models

Most IRT models for dichotomously scored items (0/1-scores) assume
unidimensionality, local independence, and a specific form of the IRF.
Unidimensionality means that test responses are assumed to depend on
only one latent trait. Local independence holds when the response on
an item in a test given theta is not influenced by the responses on other
items in the test given theta. Furthermore, IRT models make assumptions
about the shape of the IRF. An important goal of fitting IRT models is to
identify the IRF that best describes the relation between the trait level and
the probability of item endorsement.

4.1.1 Dominance IRT Models

In dominance IRT models it is assumed that the probability of item
endorsement should increase as the trait level increases, thus, IRFs are
monotonically increasing functions. Two types of dominance IRT models
are characterized: parametric models and nonparametric models. The
parametric IRT models (e.g., Embretson & Reise, 2000) describe the
shape of the IRFs by parameters for items and persons. Parametric
dominance models are characterized by s-shaped IRFs. As an alternative
to parametric models, nonparametric models (e.g., Sijtsma & Molenaar,
2002) only assume monotone increasing IRFs. No parameters are estimated
and an exact shape of the IRF is not specified. Therefore, nonparametric
models have the advantage of being more flexible than parametric models.
However, nonparametric models only allow the ordering of persons with
respect to θ using the unweighted sum of item scores. One advantage of
parametric IRT models compared to nonparametric IRT models is that they
allow for the computation of item and scale information functions. The
scale information function indicates where on the latent trait continuum
measurement precision is high or low because it is inversely related to
the standard error of measurement (e.g., Embretson & Reise, 2000). The

57



Chapter 4

amount of information an item provides with respect to θ is determined by
the discrimination parameter (αi), and the location on the θ-scale where
the information is maximized is determined by the item location (βi).

4.1.2 Unfolding IRT Models

In IRT, both persons and items are located on a continuum representing
the attribute of interest. In unfolding IRT models, persons only endorse
items if the person’s location on the trait continuum (the ideal point) and
the item’s location are close to each other. If not, a person will disagree
with the item. A person does not endorse an item for one out of two
reasons. Either a person is located too far above the item location, or a
person is located too far below the item location. If the distance between
person and item location increases, a person’s probability of endorsing the
item decreases. Unfolding models are, thus, characterized by single-peaked
IRFs.

As in dominance IRT models, both parametric unfolding IRT models
and nonparametric unfolding IRT models exist. The parametric model
(e.g., Roberts, Donohogue, & Laughlin, 2000) describes the shape of the
IRF by parameters for items and persons, which results in a specific bell-
shaped form of the IRF. The IRF is symmetric around the item location
and has an increasing s-shaped form on the lower side of the item location
and a decreasing z-shaped form on the higher side of the item location.
Item information and scale information statistics can be computed based
on discrimination parameter values.

Nonparametric unfolding IRT models (e.g., Post, 1992) are more
general models than parametric unfolding IRT models. They only assume
single-peaked items. No parameters are estimated and no specific bell-
shaped form is expected. The only assumption is that the probability of
endorsement increases, reaches a maximum, and then decreases.

4.1.3 Differences between Dominance and Unfolding IRT
Models

Stark et al. (2006; see also Post, van Duijn, & van Baarsen, 2001) give
several arguments for considering unfolding models to analyze personality
trait data.

First, scale construction under the dominance approach is based on
searching scales with high item-total correlations, high internal consistency
reliability, and a single dominant factor with high item factor loadings.
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Using this approach, constructed scales are built up of mostly positively
and negatively worded items with item locations that range from slightly
positive or negative to extremely positive or negative and there is a
tendency not to use neutrally worded items in the scales. As a consequence
these scales have high measurement precision at one of the extreme regions
of the trait continuum, but not in the middle of the trait range. In contrast,
Stark et al. (2006) showed that, using unfolding models, neutrally as well as
positively and negatively worded items - items located at any point on the
trait continuum - can be selected. This expands the pool of usable items,
may increase overall measurement precision of personality scales (see also
Roberts et al., 1999), and may add to the construct validity of the scale.

When responding to personality inventories, which ask respondents to
select statements or options that describe them best, we assume that there
is a continuous scale where persons and items (statements) are located.
Each statement or option describes a situation and has a threshold for the
trait. The better the match between the statements formulated in the items
and a person’s self-perception, the higher the probability of endorsement.
In most currently used personality scales, items are formulated relatively
positive or negative (e.g., ”I often crave excitement”, or ”I am not a cheerful
optimist”) and are endorsed by persons located at the higher and lower
trait extreme, respectively. These items tend to have monotonic IRFs and
can be described by a dominance model. On the other hand, items that
describe behaviors tending toward neutrality and that describe average
situations (e.g., ”My ability to plan is about average” or, ”I have sometimes
done things just for ’kicks’ or ’thrills”’) can be described by nonmonotonic
IRFs because persons in the middle of the continuum (i.e., persons with an
average trait value in between the negative and positive extreme) have the
highest probability of endorsing these types of items. Thus, we assume that
each situation described in the statement has a threshold for the trait being
measured and neutrally worded items describe behavior that is endorsed
by persons in the middle of the continuum.

So, neutrally worded items might fill an item gap on an interval of the
continuum where a substantial proportion of respondents may be located.
Figure 4.4 (to be further discussed in the Discussion section) shows the trait
estimates for persons on two personality inventories under two models.

Note that most persons have a person-location on the continuum
between −1 and 1, which is in the middle range of the continuum and
the area where neutrally worded items are located.

Information of neutrally worded items under unfolding models is double-
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Figure 4.1. Example of difference in test information between dominance and unfolding
model for an inventory with some neutrally worded items.

peaked as opposed to single-peaked under a dominance model. Item
information under an unfolding model is spread over the whole continuum
and results in a higher level of test information across the scale as compared
to dominance models when neutrally worded items are included in the
inventory. This is shown in Figure 4.1 for a scale with a few neutrally
formulated items. Thus, neutrally worded items may increase measurement
precision of an instrument.

Second, unfolding IRT models are more general models than dominance
IRT models; that is, the IRF of a dominance IRT model can be considered a
special case of the IRF of an unfolding IRT model, namely a single-peaked
model with its peak at plus or minus infinity. Using a more general model
may prevent misspecification of the response process. Misspecification
of the response process may affect decision making in test applications
like equating, the study of differential item functioning, and computerized
adaptive testing.

Third, self-report personality inventories often consist of a mix of
positively and negatively worded items. Researchers often implicitly
assume that positively worded items measure the same latent trait as
negatively worded items. This is not necessarily the case. Endorsing a

60



Scaling Response Processes on Personality Items

positively formulated item does not necessarily imply not endorsing an
associated negatively formulated item and vice versa. When reverse scoring
such items interpretation problems may result. An exception is when the
IRF of the reversed scored item has the same form as the IRF of the non-
reverse-scored item. Post et al. (2001) conclude that reverse-scored items
can have consequences for the reliability and validity of an item set. For
unfolding models it is not necessary to use reverse-scored items.

4.2 Aim of the Present Study

Although recent results by Stark et al. (2006), Meijer and Baneke
(2004) and Chernyshenko et al. (2001) shed a new light on personality
inventory analysis and personality inventory construction, it is unclear
how well these results generalize to other personality inventories measuring
different personality constructs and whether similar results can be found
using different IRT models. Therefore, in the present study we extend
these studies through analyzing two inventories, which measure partly
different personality constructs than in the Stark et al. (2006), Meijer and
Baneke (2004) and Chernyshenko et al. (2007) studies. These personality
inventories differ in the way they are constructed. One inventory is
constructed based on dominance models, whereas the other is constructed
based on unfolding models.

4.3 Method

4.3.1 Instruments

NPV-J

The Dutch Personality Questionnaire Junior (Dutch: Junior
Nederlandse Persoonlijkheidsvragenlijst, NPV-J; Luteijn et al., 2005)
consists of 105 mostly positively formulated items and is intended
to determine how adolescents between 9 and 15 years of age judge
their own behavior on five scales. These scales represent the traits
inadequacy (IN), persistence (PE), social inadequacy (SI), recalcitrance
(RE) and dominance (DO). The NPV-J was constructed making use of
items from the California Personality Inventory (CPI; Gough & Bradley,
1996) and The Dutch Personality Questionnaire (Dutch: Nederlandse
Persoonlijkheidsvragenlijst, NPV; Luteijn, 1974), which is the adult version
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of the NPV-J. Scales were constructed using a combination of different
dominance response strategies: maximizing internal consistency, factor
analysis, and empirical keying (Luteijn et.al., 2005, p. 8).

The NPV-J was used because it is a commonly used personality
inventory in the Netherlands and it provides measures of several important
personality traits. Barelds and Luteijn (2002) compared the factor
structure of the adult version of the NPV-J (the NPV) with the Five-Factor
Personality Inventory (FFPI; Hendriks, Hofstee, & de Raad, 1999) and the
Dutch version of the Eysenck Personality Questionnaire (EPQ; Sanderman,
Arrindell, Ranchor, Eysenck, & Eysenck, 1995). Barelds and Luteijn (2002)
found that IN (or Neuroticism) correlated highly with Emotional Stability
(FFPI; −.65) and Neuroticism (EPQ; .78). Furthermore SI (or Social
Anxiety) and DO correlated highly with Extraversion (FFPI; −.74 and
.48 respectively, and EPQ; −.67 and .58 respectively) and PE (or Rigidity)
correlated highly (.57) with Conscientiousness (FFPI).

Scoring was originally done on a three-point scale (Agree, ?, Disagree)
but because the instructions of the NPV-J discourage the use of the ?
response, and because we were afraid that many adolescents would choose
the ? category, a two-point scale (Agree, Disagree) was used. The answer
Agree was scored as one and the answer Disagree was scored as zero.

Data analysis of the NPV-J items was based on the original scales.
To date, the psychometric properties of the NPV-J have mainly been
investigated using classical test theory (CTT) and factor analytical
approaches. Luteijn et al. (2005) showed a reasonable fit for a five-
factor model with Cronbach’s α for the subscales between .68 (DO) and
.90 (IN). Although the NPV-J was constructed using dominance models,
a first analysis of our data using a dominance model (see results below)
showed that a substantial part of the items had low item-discrimination
parameters. This could be because some items may be better described by
an unfolding model. We were curious to know whether this is the case.

Order Scale

Second, we used a Dutch translation of a personality inventory that
is intended to determine the self-judgement of adolescents and adults on
the order-facet (an important facet of Conscientiousness). The inventory
was recently constructed by Chernyshenko et al. (2007) by creating
items to represent the full range of behaviors (positive, negative, and
moderate/neutral) associated with orderliness. The content of the items
was rated on a 7-point scale in terms of their extremity/location. For
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example, the item ”I spend a lot of time looking for objects I misplaced”
received a rating of 1 (most negative pole) and the item ”Every item in
my room and on my desk has its own designated place” received a rating
of 7 (most positive pole). The item ”My room neatness is about average”
received a rating of 4, which indicates a neutral position. Then, unfolding
models were used to analyze the items and construct the final scale.

The final scale consisted of 20 positively, neutrally, and negatively
worded items. Scoring was done on a 4-point scale (Strongly agree, Agree,
Disagree, and Strongly disagree). As in Chernyshenko et al. (2007), in
the present study data were dichotomized before they were analyzed. The
categories Strongly agree and Agree were scored as one and the categories
Disagree and Strongly disagree were scored as zero. This was done because
there were few persons that endorsed the options Strongly Agree and
Strongly Disagree, and as a result the item parameters of these categories
would have been estimated very inaccurately.

As far as we know, the Order scale is the only personality scale that is
developed using ideal-point modeling. We were curious to know how this
scale behaved in a replication study using partly different models and a
different population.

4.3.2 Participants and Procedure

NPV-J

Data were collected from 866 persons who attended primary and
secondary education in the east of the Netherlands. Participants were 492
girls and 374 boys; the majority were white. Mean age of the participants
was 13.8 years of age (SD = 2.7). 70.7% were between 9 and 15 years of
age; 2.1% were (a few months) younger, and 27.2% were between 15 and
18 years of age. Although the NPV-J is originally intended for children
between 9− 15 years of age, it is our experience that the inventory is also
very useful for persons who are somewhat younger or older. Because we
were only interested in studying the response processes (and did not need
norm tables, which are only available for children between 9 to 15 years of
age) we included the younger and older persons in the sample.

Order Scale

Data on the Order scale were collected from 704 persons who attended
secondary and college education. Participants were 397 girls and 299 boys;

63



Chapter 4

the majority were white. Mean age of the participants was 16.0 years
(SD = 2.6).

Note that the samples contained somewhat different populations because
the NPV-J and the Order scale are intended for different populations
(adolescents, and adolescents and adults, respectively). Before the
adolescents filled out the inventories, standardized oral instructions were
provided by the authors. During test administration, the authors were
available for further clarification. No time limits were set.

4.3.3 Analyses

Both dominance IRT models and unfolding IRT models were used to
analyze the NPV-J and Order scale data. For each type of model we used
a parametric and a nonparametric model. We evaluated the robustness of
our results by applying different scaling methods and IRT models to the
same dataset.

Dominance models

Mokken’s model of monotone homogeneity Mokken’s non-
parametric monotone homogeneity model (MHM; e.g., Sijtsma &Molenaar,
2002) assumes unidimensionality, local independence, and monotonically
increasing IRFs. Particular shapes of the IRFs are not specified. The
MHM imposes the following restriction: P (θa) < P (θb) for all θa ≤ θb, in
which a and b denote persons. This restriction is not restrictive enough to
allow the estimation of an individual’s score on a latent variable, but rather
the MHM uses a person’s raw scale-score to order persons on a construct.

To check whether the IRFs are monotonically increasing we used the
computer program Mokken Scaling for Polytomous Items, version 5.0
(MSP5.0, Molenaar & Sijtsma, 2000). One way to check monotonicity
involves the computation of H-coefficients that indicate the scalability of
items (Hi), of item pairs (Hij), and of the total scales (H). The coefficients
are expressed by a ratio of the observed covariance and the maximum
value of this covariance. The program calculates item, item pair, and scale
coefficients for the total scales. Values of these scalability coefficients range
from zero to one. Increasing values between .30 and 1.00 indicate evidence
for monotone increasing IRFs, whereas values below .30 indicate violations
of increasing IRFs.
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One-parameter logistic model The one-parameter logistic model
(OPLM, Verhelst & Glas, 1995) is a parametric dominance IRT model.
Similar to the MHM, unidimensionality and local independence are
assumed. The shape of the IRF is a logistic function. OPLM estimates
the shape of the IRF by estimating the location parameter after choosing
a user-specified integer slope, which is the item discrimination. The IRF is
defined as

P (Xi = 1 | θ) = expAi(θ − βi)
1 + expAi(θ − βi)

(4.1)

where Xi = xi is the observed item response (xi = 1 for the agree response,
and xi = 0 for the disagree response), Ai is the user-specified integer slope
(Ai > 0), and βi is the item location parameter. When integer values
are chosen for the slopes, the statistical properties are analogous to the
properties of the Rasch model.

The program OPLM (Verhelst, Glas & Verstralen, 1995) first estimates
the location parameters after choosing a user-specified integer slope, which
is equal for each item. When the model with equal user-specified slopes
does not fit the data, values for the integer slopes can be changed to higher
and lower values. These integer slope values differ over items. If the slope
parameters are fixed at integer values, the only parameters to be estimated
are the location parameters. This is repeated until a fitting model is found.

The program OPLM was used to check the fit of the logistic IRT model.
The null hypothesis of monotonicity and sufficiency of the total score was
investigated by means of four item statistics (one χ2 for each item and three
M -statistics) and a global asymptotic χ2 statistic, denoted by R1c (Glas,
1988). χ2 statistics were calculated for each item. The χ2 statistic for the
items is sensitive to overestimation or underestimation of the item slope
indices. M -statistics give information about when the integer slopes have
to be adapted and in what direction. The R1c-statistic is the sum of the
item χ2 statistics and gives information about model fit.

Unfolding Models

Multiple unidimensional unfolding model The nonparametric
multiple unidimensional unfolding model (MUDFOLD; Van Schuur
and Post, 1998; Post et al., 2001) assumes unidimensionality, local
independence, and single-peaked IRFs. The model does not further define
the shape of the IRFs. The IRF of an item gives the probability of
endorsement given a persons’ location in relation to the item. Persons
located below or above the item location will have lower probability of
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endorsing the item than persons who have a location similar to the item.
This assumption is not restrictive enough to allow the estimation of an
individual’s score on a latent variable but, based on scores on items, persons
are ordered on an ordinal bipolar scale.

H-coefficients are used to check the scalability of the items. Scalability
coefficients are used for item triples, Hijk , for an item, Hi, and for the
total scale, H. They are expressed by the ratio between observed and
expected triple values. The MUDFOLD program was used to calculate the
H-coefficients. The program first searches the optimal smallest unfolding
scale, that is, a first subset of items that together have a relatively high H-
value and, thus, form a strong scale. The selection of the first triple of items
is based on selecting the three items with the highest positive scalability
value Hijk in one triple order, while the other scalability values of that
triple are negative. In addition, Hijk must be higher than a user-specified
value c (default is c = 0.30). Then items are added one by one, constantly
checking if Hijk, Hi, and H are equal to or larger than c. Second, c-values
were lowered, all items of the initial scale are added, and H-coefficients for
the total scale, its items, and item pairs were calculated. Increasing values
between .30 and 1.00 indicate more convincing evidence for single-peaked
IRFs, whereas values below .30 indicate violations of single-peakedness.

An important diagnostic in MUDFOLD is the conditional adjacency
matrix (CAM; Post & Snijders, 1993) and its fit statistics, the ISO-, UNI-,
and MAX-statistics. The CAM matrix can be used to check the IRFs. The
ijth entry in the matrix represents the conditional probability of choosing
row item Ii, given that column item Ij is endorsed. The different values
in the rows indicate the shape of the IRF. If the scale is described by an
unfolding model, the maxima of the rows shift from the top left column to
bottom right column, except for inversions around the diagonal. The ISO-
statistic gives the degree of violation of the unimodality in a row, whereas
the UNI-statistic shows which items form disturbances of unimodality. The
MAX-statistic controls for the order of shifting tops, and shows which items
have a disturbance.

Generalized graded unfolding model The generalized graded
unfolding model (GGUM, Roberts, Donoghue, & Laughlin, 2000;
Roberts, Fang, Cui & Wang, 2004) assumes unidimensionality and local
independence. The IRF is a bell-shaped function. The GGUM IRF
has three item parameters, the location parameter βi, the discrimination
parameter αi, and the subjective response category threshold τi. The IRF
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for the dichotomous case is given by

P (Xi = 1 | θ) = exp(f) + exp(g)
1 + exp(f) + exp(g) + exp(h) . (4.2)

in which

f = αi(1(θ − βi)− τi),

g = αi(2(θ − βi)− τi),

h = αi(3(θ − βi)).

In Figure 4.2 we show an example of an IRF with parameters: βi = 1.0,
αi = 1.5 and τi = −0.5. As can be seen the IRF attains its maximum
value in βi and has a single-peaked response function. When the distance
between item location βi and the person location θ increases, the probability
of endorsing the item decreases. The discrimination parameter αi expresses
how well we can discriminate between persons (αi > 0). The τi parameter
(τi < 0) expresses the distance on the θ continuum from the item location
βi to the location where endorsing becomes more likely than not endorsing
the item (for a more detailed description see Roberts et al., 2000).

The GGUM2004 program (Roberts, et al., 2000, 2004) was used to
estimate the item and person parameters and to inspect graphs of the
IRFs. Although GGUM2004 also contains item and model fit statistics,
such as infit and outfit statistics, according to the manual these statistics are
generalized from cumulative IRT applications and are not mathematically
deduced for GGUM. Little is known about their distribution, their power
and their Type I error rate. Therefore the MODFIT computer program
(Stark, 2001) was used to compute χ2 statistics and fit plots for GGUM.
Means and standard deviations of the adjusted χ2/df ratios were computed
to summarize the results for each scale. Values above 3.00 may indicate
model misfit.

4.4 Results

4.4.1 Dominance Models

Number of items (K), scale means (M), standard deviations (SD),
skewness and kurtosis, Cronbach’s α, and average item-test correlations
(ρiT ) are given in Table 4.1. Scale distribution and values of Cronbach’s
α for the NPV-J sample were comparable to the values found in earlier
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Figure 4.2. Example of an IRF under GGUM model.

studies (Luteijn et al., 2005). Average item-test correlations were higher
for the IN scale and the SI scale than for the PE, RE, and DO scales. The
average item-test correlation for the Order scale was .30 and Cronbach’s α
was equal to .74.

Results with respect to the RE scale are not discussed in detail in the
following paragraphs. This scale formed a weak overall scale under all
models. Items were monotonically increasing, but most items showed low
discrimination values. Although this scale is not discussed, information on
this scale is displayed in the tables.

Table 4.1
Descriptive statistics and MSP H-coefficients
Scales K M SD α Skewness Kurtosis ρiT H H i-range
Inadequacy 28 6.23 5.19 .87 1.18 1.14 .414 .28 .15-.47
Persistence 25 17.93 3.96 .74 -0.64 0.14 .278 .16 .05-.27
Social Inadequacy 13 5.01 3.17 .79 0.27 -0.86 .419 .34 .18-.43
Recalcitrance 24 8.25 3.68 .72 0.64 0.26 .266 .17 .09-.26
Dominance 15 5.46 2.65 .66 0.74 0.42 .278 .20 .10-.31
Order 20 12.19 3.74 .74 -0.18 -0.66 .301 .19 .04-.28
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Table 4.2
Fit statistics and Ai-values OPLM
Scale K R1c-Rasch Ai R1c-OPLM nonfitting

(p-value) (p-value) items
Inadequacy 28 313.06 22252 52722 33232 76.31 1

(.00∗) 63364 24364 224 (.60)
Persistence 25 246.23 13342 36232 44552 71.12 0

(.00∗) 24243 44425 (.51)
Social Inadequacy 13 256.24 32534 13541 533 46.48 1

(.00∗) (.11)
Recalcitrance 24 160.78 (.00∗) 23323 13433 23224 65.58 2

(.00∗) 34463 5524 (.59)
Dominance 15 133.32 36322 22442 36741 32.14 1

(.00∗) (.84)
Order 20 302.97 36523 62x52 23243 65.84 0

(.00∗) 21325 (.13)

Monotone Homogeneity Model

NPV-J H- and the range of Hi values are shown in Table 4.1. H-values
varied between .16 and .34. For the IN and SI scales most items had Hi-
values larger than .20. The PE and DO scales consisted of items with low
Hi-values. Note that low Hi values point at low item discrimination but
may also indicate the presence of single-peaked IRFs.

Order scale As expected, the Order scale formed a weak overall scale
with an H-coefficient of .19. This low value was not surprising because
the scale was constructed based on ideal-point response processes and thus
single-peaked IRFs were expected. The range of Hi-values of the items
(Table 4.1) showed that many items had low discriminating power.

OPLM

NPV-J We first fitted the Rasch model for each scale. Table 4.2 (Column
3, R1c-Rasch) shows that for each scale the Rasch model did not fit the data.
All R1c-values for model fit were high and had p values below .05. The
slope values were adapted and the R1c was computed. Table 4.2 (Column
5, R1c-OPLM) shows the fit of this model. In all cases R1c was improved
substantially compared to the Rasch model.

The interpretation of Ai-values and their variation is relative to their
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scale: If all Ai-values were doubled, the fit would remain unchanged.
Nevertheless, most items of each scale had slope indices around its mean
(mean Ai = 3). This indicated that items in the scales had relatively equal
slope indices (Ai ranging from 2 to 4). OPLM results and MHM results
were similar. The items with relatively high Ai-values equal to 5, 6, or 7
had the highest Hi-values in their scales under the MHM, whereas items
with the lowest Hi-values in their scales had relatively low Ai-values equal
to 1 or 2.

Order scale Table 4.2 shows a high R1c-value and a p-value smaller than
.05 for the Rasch model. The Rasch model did not describe the data well.
After the slope values were adapted and fit indices were computed, the
model still did not describe the data well. One item (item 8: ”my room
neatness is about average”) had to be deleted to obtain reasonable fit indices
(see Table 4.2). Notice that this is a neutrally worded item, which might
have a single-peaked IRF. Most items in the remaining scale had Ai-values
between 2 and 4. OPLM results were similar to MHM results. The item
that had to be deleted had Hi-values of .32 under the MHM.

4.4.2 Unfolding Models

GGUM

NPV-J Mean and standard deviations of the adjusted χ2/df ratios for
singles, doubles and triples were computed (not tabulated). Most scales
showed good fit for singles, doubles and triples. Only the IN scale did not
fit the data well for both singles and doubles. Mean values were slightly
above 3.

In line with the results discussed above all scales consisted of items with
monotone increasing IRFs; item location parameters were mostly around
2 or above. Most scales consisted of dominance items with a mix of high
discriminating items and low discriminating items. For the IN and SI scales
some items showed a trend to single-peakedness at the higher end of the
trait continuum. The PE, SI and, DO scales contained items with single-
peaked IRFs. In the PE scale the six items with single-peaked IRFs had
both highly and low discrimination values, while the two single-peaked
items in the SI scale and the two single-peaked items in the DO scale had
high discrimination values. An example of a single-peaked item from the
PE scale was ”When I have done something wrong, I feel terrible”. An
example of a highly discriminating single-peaked item of the DO scale was
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”I like to act the boss”.
For most scales, the results under the GGUM model were similar to

the results under the dominance models. Only the two single-peaked DO
items discussed above were highly discriminating increasing items under
the dominance models, and were also highly discriminating under GGUM.
The reason is that under both types of models the items are located at the
higher extreme of the θ scale (around θ = 1.5).

Order Scale Mean and standard deviation values of the adjusted χ2/df
ratios for singles, doubles and triples were calculated (not tabulated). The
Order scale showed good fit under the GGUM model. Eight items of the
Order scale showed monotonically increasing IRFs and eight items showed
monotonically decreasing IRFs. About half of the monotonically increasing
and half of the monotonically decreasing items were highly discriminating
items. Some items showed folding at the higher or lower end of the
continuum. Four items were found with single-peaked IRFs, two of which
had high discrimination values. Two examples of single-peaked items were
”Being neat is not exactly my strength” (highly discriminating) and ”My
ability to plan is about average” (low discriminating). Furthermore, results
were mostly similar to results under the dominance models.

MUDFOLD

NPV-J We first used MUDFOLD to identify reasonably strong initial
clusters of items for all the scales (see Table 4.3). All first clusters had
H-values between .37 and .43, and contained 4 to 10 items. Second, the
selected clusters of items were used as a start set to select all items of each
scale. Not all a priori scales were scalable under MUDFOLD. For the IN
and PE scales the program showed a warning indicating that it could not
order all items. A possible explanation is that the items had item locations
too close to each other; another explanation is that the item discrimination
was low across the trait continuum. For the SI and DO scales items could
be ordered. Table 4.3 shows that H = .35 for the SI scale, whereas for the
DO scale H = .20. For the SI scale all items had Hi values between .27 and
.53, whereas for the DO scale there was a mix of high and low Hi-values.

CAM-matrices, ISO-, UNI- and MAX-statistics were used to check the
shape of the IRFs in the SI and DO scales. ISO-, UNI- and MAX-values
for the SI and DO scales showed that there were some violations to the
modeled item shapes. Inspection of the item statistics (not tabulated)
showed small disturbances in unimodality and shifting tops for only a
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Table 4.3
H-coefficients and Hi-coefficients MUDFOLD for both cluster steps

1st step 2nd Step
Scale K H Hi-range K H Hi-range
Inadequacy 6 .37 .31-.43 - - -
Persistence 10 .37 .33-.41 - - -
Social Inadequacy 8 .37 .31-.54 13 .35 .27-.53
Recalcitrance 4 .43 .41-.46 - - -
Dominance 6 .38 .32-.47 15 .20 .15-.24
Order 7 .40 .35-.45 20 .23 .15-.30

few items in the SI scale. The CAM matrix showed that most items in
the SI scale had monotonically increasing or decreasing IRFs, sometimes
with a trend to single-peakedness at the higher end of the trait continuum.
Two items showed single-peaked IRFs. In general, the CAM matrix of the
DO scale showed monotonically increasing items with weak discriminating
values. Three items with (a trend to) single-peaked IRFs were found.
Weak discrimination may lead to weak disturbances in unimodality and
shifting tops. This was reflected by the item statistics for the DO scale
(not tabulated).

Results for the SI scale were similar to the results found under the
dominance models and the GGUM model. An example of a folding item
under all programs was ”I prefer playing games I am familiar with”. This
item had very flat slopes under the dominance models, whereas it showed
single-peaked IRFs under the unfolding models. An explanation is that
highly socially adequate respondents do not want to play familiar games
because they find it boring, whereas very socially inadequate respondents
do not want to play games at all because they do not like to interact with
other people in an ill-defined context. In general, results for the DO scale
were also in agreement with the results found under the dominance models
and the GGUM model.

Order scale A first cluster of seven items was found (Table 4.3). This
first cluster was selected as a start set to select all items from the scale. H
was equal to .23 for the total scale. The ISO-, UNI- and MAX-statistics
showed that there were some violations to the model. The CAM matrix
showed that the Order scale consisted of a mix of monotonically increasing
(10 items), monotonically decreasing (6 items) and single-peaked items (4
items). The item statistics (not tabulated) pointed at small violations
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Figure 4.3. IRFs for item ”Although I try to keep everything in its place, it does not
always work for me” for a) OPLM, and b) GGUM.

against unimodality and shifting tops and some monotonically increasing
and decreasing items showed some folding at the higher and lower end of
the trait continuum, respectively.

In general, results found under GGUM and MUDFOLD were similar.
In Figure 4.3 the IRFs of the item, ”Although I try to keep everything in
its place, it does not always work for me” are shown. This item showed
consistent results under all models. The item had a relatively flat slope
(Ai = 2) under the dominance models, whereas it showed single-peaked
IRFs under the unfolding models. An explanation might be that ordered
persons always keep things in their places, while unordered people do not
even try, or do not succeed.

4.5 Discussion

In this study, we investigated the fit of both dominance and unfolding
IRT models to self-report personality inventories. With respect to the NPV-
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J, results confirmed the findings of Stark et al. (2006), Chernyshenko et
al. (2001), and Meijer and Baneke (2004) that some items in a dominance
response-based personality inventory are single peaked or show a trend to
single-peakedness at the higher or lower end of the continuum. Because
single-peaked items are often neutrally worded items that are situated
in the middle of the latent trait continuum these items may add to the
measurement precision in an area where dominance items are difficult to
formulate.

In general, results with respect to the Order scale confirmed the
result found in the Chernyshenko et al. (2007) study. As they showed,
it is possible to construct a scale containing items with monotonically
increasing, monotonically decreasing and single-peaked IRFs. However,
results on the Dutch translation of the scale showed fewer single-peaked
items and items had, in general, lower discrimination power.

Item analysis is an essential part of scale development. It is our belief
that nonparametric and parametric dominance and unfolding models are
useful models to obtain information about the characteristics of the IRF.
In many papers about the fit of different IRT models to personality items,
there is no distinction between ”general” personality items (like the items
in the NEO-PI-R; Costa & McCrea, 1992) and psychopathology items (like
the items in the MMPI; Butcher, et al., 1989). There may be, however,
an important difference between these two types of items, which may
influence the fit of an IRT model to the data. Psychopathology scales
usually consist of statements that are rather extreme because clinicians
are mainly interested in extreme behavior. For example, consider one of
the MMPI scales, the acute anxiety scale. Items in this scale consist of
extreme statements like ”I sometimes feel that I am about to go to pieces”.
Even in a psychiatric population, this item is only endorsed by people
scoring very high on acute anxiety. As a result most items in this scale
are characterized by IRFs that are located at the higher end of the latent
trait scale. These items fit a dominance model because there will be very
few highly anxious people that will not endorse these extreme items. On
the other hand, general personality self-report inventories like the ones that
are used for personnel selection purposes consist of scales that consist of
items that are more spread across the latent trait continuum. For example,
a Conscientiousness scale may consist of items that discriminate across
the whole range of the trait because high conscientiousness predicts job
performance and middle to low conscientiousness predicts risky behavior
in job situations (Ozer & Benet-Martinez, 2006). In this case, neutrally
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worded items may be formulated that are best described by an unfolding
model.

As Stark et al. (2006) discussed, misspecification of the item response
process may have serious consequences for the ordering of persons according
to their latent trait scores and may affect the conclusions in a diagnostic,
classification, or selection context. To illustrate this, consider Figure 4.4.
Here we plotted the estimated θ values (θ̂) of the IN scale and the Order
scale under a dominance and an unfolding model. The correlations between
the trait scores for both models were high (.988 and .971 for the IN and
Order scale, respectively). As Figure 4.4a illustrates, when all the IRFs
are characterized by a dominance model (IN scale) the θ̂ values cluster
tightly along the diagonal line with a few exceptions, thus ordering the
θ̂ values similarly. In contrast, for the Order scale (Figure 4.4b) which
is characterized by both single-peaked and monotonically increasing IRFs
scattering of the θ̂ values about the diagonal line indicates that the θ̂
values are differently ordered under the two models, especially at the upper
extreme.

Finally, the results in this study showed some evidence for the
application of unfolding IRT models in personality measurement. Future
research in the field of scale analysis and scale construction should point
out in which domains of personality measurement unfolding models are
especially useful.
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Figure 4.4. Scatter-plot comparisons of traits estimates from dominance and unfolding
models for a) Inadequacy scale, and b) Order scale.Every circle represents a person’s
trait estimates under the two models.
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Person fit tests for unfolding
IRT models

5.1 Introduction

Typical performance measures (e.g., attitude and personality
inventories) are often analyzed and scored using factor analytic and
dominance IRT models. However, there are indications that responses to
typical performance measures do not follow a factor analytic or dominance
IRT model (Chernyshenko, Stark, Drasgow, & Roberts, 2007; Weekers
& Meijer, 2008). Contrary to maximum performance measures (e.g.,
educational tests) on typical performance measures it is likely to expect
that persons only endorse items that are close to their personal location on
the continuum; persons located on the higher end of the trait continuum will
endorse (extremely) positively formulated statements, persons located on
the lower end of the trait continuum will endorse (extremely) negatively
formulated statements. Persons in the middle of the trait continuum,
the persons with an average location on the trait, will endorse neutrally
formulated statements. This indicates that items will not only have
monotone increasing tracelines and monotone decreasing tracelines, but
single-peaked tracelines as well. Unfolding models are characterized by
single-peaked response functions.

Following unfolding models, persons may not endorse a statement for
one out of two reasons, as was already stated by Thurstone (1928) and
Coombs (1964). A person who has a person location too far above the
item location will disagree because (s)he has a more positive opinion than
what is stated in the item, and thus disagrees from above, whereas a person
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who has a person location below the item location will disagree from below,
because (s)he has a more negative opinion than what was stated in the
item. Each item has a trait range in which the item is most likely to be
endorsed, the lattitude of acceptance (Coombs, 1964), that is, the range
from the threshold between disagree from below and agree to the threshold
between agree and disagree from above. Various parametric unfolding
models are developed. The models differ in the way they model the lattitude
of acceptance (Luo, 1998). The lattitude of acceptance is expressed by one
or two parameters for heighth and width of the item response curve. Some
models are expressed in terms of polytomous dominance IRT models, such
as the cosine hyperbolic model (Andrich, 1996), collapsed the partial credit
model (Verhelst & Verstralen, 1993), collapsed graded response model
(Korobko, 2007) and the generalized graded response model (Roberts,
Donoghue, & Laughlin, 2000, 2002).

Although studies showed that unfolding models fit the data and person
scores could be calculated under the model (Chernyshenko, Stark, Drasgow,
& Roberts, 2007.; Weekers & Meijer, 2008), no research has been done
to detect person misfit. The responses a single person gives to items
might not be conform the model, that is, the model might not be valid
for each person. Reasons for invalidity of test scores can be due to
various factors (see also Reise & Flannery, 1996), think about; faking good
(social desirability) or bad (malingering), unmotivated test responding,
misalignment, tendency to agree or extreme item responding. The validity
of persons’ test scores can be investigated using person fit statistics. In the
context of maximum performance testing, several person fit statistics for
dichotomous and polytomous IRT models have been proposed to identify
aberrant item score patterns. These statistics are also proven helpful in
typical performance assessment. Meijer and Sijtsma (1995, 2001) give an
overview of person fit statistics for dominance IRT models. Although some
research is done on person fit of typical performance measures, it is mainly
focussed on dominance models, person fit for unfolding models is hardly
investigated.

In this study we will develop person fit statistics for unfolding
models based on the Lagrange Multiplier-test (LM-test). The LM-test
to measure person fit was proposed by Glas and Dagohoy (2007) for
polytomous dominance IRT models (e.g., generalized partial credit model
(Muraki,1992), graded response model (Samejima, 1969) and sequential
model (Tutz, 1990)). These person fit statistics are also useful for the
dichotomous dominance IRT models, which are special cases of their
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polytomous variants. In this paper the person fit statistic based on
the Lagrange Multiplier statistic will be used to detect person misfit
to unfolding IRT models for dichotomous items. The statistics can be
extended to use for person fit on polytomous unfolding models.

The paper is organized as follows. First four unfolding IRT models
are described. Some models are already existing models, other models are
developed in this study. Second, the LM-tests for person fit are explained.
Two person fit tests will be developed, one test to test constancy of theta,
and one test for tendency to agree. Third, simulation studies will be
conducted to assess Type I error rate and power of both LM-statistics and to
test robustness of the four different models. Finally some recommendations
are given.

5.2 Unfolding IRT models

Four models will be introduced. Three models (i.e., generalized graded
unfolding model, collapsed partial credit model, collapsed graded response
model) are collapsed versions of well-known polytomous IRT models, and
one model (i.e., quadratic logistic regression model) is a simple logistic
regression model. For all models, let a test consist of a certain number
of items, labeled i = 1, ...,K, with dichotomous response categories j =
0, 1, and let the item responses be denoted by stochastic variable Xi with
realization xi, and xi = 1 if the item is endorsed, and xi = 0 if the items is
not endorsed. The probability of scoring in a response category is given by
P (Xi = j | θ), in which theta (θ) is a latent ability variable for the person.

5.2.1 The generalized Graded Unfolding Model

The generalized graded unfolding model (GGUM; Roberts, Donoghue,
& Laughlin, 2000) is a collapsed version of the generalized partial credit
model (GPCM; Muraki, 1992). The dichotomous case of GGUM can be
seen as a collapsed version of a 4-category GPCM (Figure 5.1). Persons
can disagree with a statement for two reasons; they have a location too
far above the item location (disagree from above; curve 4 in Figure 5.1) or
they have a position too far below the item location (disagree from below;
curve 1 in Figure 5.1). Similarly, a person can endorse an item, because
the person is located slightly above the item location (agree from above;
curve 3 in Figure 5.1) or slightly below the item location (agree from below;
curve 2 in Figure 5.1). The two observed category responses j = 0, 1 on an
item i, are the result of the four latent response categories z = 1, 2, 3, 4.
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Figure 5.1. 4-category generalized partial credit model with parameter values
αi = 1.00, βi = 0.00, τi = −1.50

The probability of answering in the latent category of an item, is denoted
by P (Yi = z | θ), with the realization of Yi as the response in the zth-
category to the ith item, and z = 1 is the latent response in the category
disagree from below, z = 2 is the latent response agree from below, z = 3
is the latent response agree from above and z = 4 is the latent response
disgree from above. The response functions are given by

P (Yi = 1 | θ) = 1
1 + exp(f) + exp(g) + exp(h) ,

P (Yi = 2 | θ) = exp(f)
1 + exp(f) + exp(g) + exp(h) ,

P (Yi = 3 | θ) = exp(g)
1 + exp(f) + exp(g) + exp(h) ,

and
P (Yi = 4 | θ) = exp(h)

1 + exp(f) + exp(g) + exp(h) ,

in which
f = αi(1(θ − βi)− τi),

g = αi(2(θ − βi)− τi),
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h = αi(3(θ − βi)),
and where βi is the location of the ith item on the latent continuum (in
Figure 5.1 βi = 0.00); αi is the discrimination of the ith item (αi > 0); τi
is the relative location of the subjective response category threshold of the
ith item (τi < 0); in Figure 5.1 the distance between the threshold of curve
2 and 3, and the threshold of curve 3 and 4 (or 1 and 2).

The dichotomous case for GGUM is a collapsed version of this 4-category
GPCM. The four latent category responses z = 1, ..., 4 (disagree from below,
agree from below, agree from above, disagree from above) collapse into the
dichotomous observed responses j = 0, 1 (disagree, agree). The two latent
disagree categories z = 1 and z = 4 define the observed disagree response
j = 0 on an item, whereas the two latent agree responses z = 2, and z = 3
define the observed agree response j = 1 on an item. The probability of
scoring in a response category P (Xi = j | θ) , is then equal to

P (Xi = 0 | θ) = 1 + exp(h)
1 + exp(f) + exp(g) + exp(h) ,

and
P (Xi = 1 | θ) = exp(f) + exp(g)

1 + exp(f) + exp(g) + exp(h) . (5.1)

This parameterization is according to Roberts, Donoghue, and Laughlin
(2000).

5.2.2 The collapsed Generalized Partial Credit Model

The collapsed generalized partial credit model (CGPCM) is a collapsed
version of the 3-category generalized partial credit model (GPCM; Muraki,
1992). Where GGUM assumes that a response on a dichotomous item is
the result of a choice in one of four categories, the CGPCM assumes that
a response on a dichotomous item is the result of a choice between three
categories z = 1, 2, 3; disagree from below (z = 1), agree (z = 2) and
disagree from above (z = 3, Figure 5.2). Although the model is slightly
simpler the model has a similar interpretation as GGUM. For this model,
persons located close to the item location will endorse the item without
making a specification whether they are located above or below the item
location (curve 2 in Figure 5.2), whereas persons may disagree with the
item for one out of two reasons, disagree from below (curve 1 in Figure 5.2)
or disagree from above (curve 3 in Figure 5.2).

The probability of scoring in the three latent categories P (Yi = z | θ)
according to the GPCM are given by
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Figure 5.2. 3-category generalized partial credit model with parameter
values αi = 1.00, βi = 0.00, τi = −1.50

P (Yi = 1 | θ) = 1
1 + exp(k) + exp(l) ,

P (Yi = 2 | θ) = exp(k)
1 + exp(k) + exp(l) ,

and
P (Yi = 3 | θ) = exp(l)

1 + exp(k) + exp(l) ,

in which
k = αi((θ − βi)− τi),

and
l = αi(2(θ − βi)),

and where αi is the discrimination parameter (αi > 0), βi is the location
parameter, which is equal to the position of the top (in Figure 5.2 βi =
0.00), and τi is the response category threshold (τi < 0), which is equal to
the distance between the location parameter and the threshold (in Figure
5.2; τi = −1.50).

Under the CGPCM the observed agree response j = 1 is not a collapsed
response and is equal to the latent agree category response z = 1. The
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two latent disagree responses, z = 0, and z = 2 do collapse into one
observed disagree response j = 0 .The probability of scoring in the observed
categories on an item P (Xi = j | θ) is equal to

P (Xi = 0 | θ) = 1 + exp(l)
1 + exp(k) + exp(l) ,

and
P (Xi = 1 | θ) = exp(k)

1 + exp(k) + exp(l) . (5.2)

5.2.3 The collapsed Graded Response Model

The collapsed graded response model (CGRM; Korobko, 2007) is the
collapsed version of Samejima’s (1969) 3-category graded response model
(GRM). This model is similar to the CGPCM, in the way that there are
three latent response categories z = 0, 1, 2 (disagree from below, agree
and disagree from above respectively) that collapse into the unfolding
dichotomous response model CGRM. The 3-category GRM is shown in
Figure 5.3. The two latent disagree responses z = 0 (curve 0 in Figure 5.3)
and z = 2 (curve 2 in Figure 5.3) collapse into an observed disagree response
j = 0 on the dichotomous item, whereas the observed agree response j = 1
is equal to the latent agree response z = 1 (curve 1 in Figure 5.3).

Using the abbreviation of the logistic function given by

π (y) = exp(y)
1 + exp(y) ,

the probability of scoring in the three latent categories, P (Yi = z | θ) is
equal to

P (Yi = 0 | θ) = 1− πi1(m),

P (Yi = 1 | θ) = πi1(m)− πi2(n),

and
P (Yi = 2 | θ) = πi2(n),

in which
m = αiθ − βi1,

n = αiθ − βi2,

and αi is the discrimination parameter (αi > 0), βi1 is the location
parameter of 1 − πi1 (see Figure 5.3) and βi2 is the location parameter
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Figure 5.3. 3-category graded response model with parameter values
αi = 1.00, βi1 = −1.50, βi2 = 1.50

of πi2 (see Figure 5.3). βi1 has to be smaller than βi2, and curve 2 is the
difference between πi1 and πi2.

After collapsing curve 0 and curve 2 into observed response category
j = 0, the probability of scoring in the collapsed observed categories on an
item P (Xi = j | θ) is given by

P (Xi = 0 | θ) = 1− πi1(m) + πi2(n),

and
P (Xi = 1 | θ) = πi1(m)− πi2(n). (5.3)

5.2.4 The Quadratic Logistic Regression Model

The Quadratic Logistic Regression Model (QLOG) is different from
the former three models, in that QLOG is not a collapsed version of a
polytomous dominance IRT model, but a non-linear version of the common
linear logistic regression models that are often used in IRT (e.g., 1PLM,
2PLM). The linear models assume a logit function that is equal to a linear
regression equation (see Figure 5.4), which results in monotone increasing
or decreasing item characteristic curves (ICCs). However, unfolding models
consist of both monotone tracelines and single-peaked tracelines. To model
ICCs with single-peaked curves a different formula for the logit function
is needed. The logit function first has to increase and at a certain point
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(the top) has to decrease again. The most well-known function to model
a peaked curve is a parabolic regression function (Figure 5.4). Although
the monotone tracelines do not seem to match this function, monotone
tracelines actually are single-peaked tracelines with the top at minus infinity
(decreasing traceline) or plus infinity (increasing traceline).

To describe unfolding models the parabolic regression function is used
as the logit function, which is given by

logit = log P (Xi = 1 | θ)
P (Xi = 0 | θ) = αiθ + βi + γiθ

2,

with γi < 0. If
o = αiθ + βi + γiθ

2,

the probability for scoring in each category is given by

P (Xi = 0 | θ) = 1
1 + exp(o) ,

and
P (Xi = 1 | θ) = exp(o)

1 + exp(o) . (5.4)

5.3 Lagrange Multiplier test

The Lagrange Multiplier test (LM-test; Aitchison & Silvey, 1958), which
is equal to the score test (Rao, 1947) or modification index (Sörbom, 1989),
can be used to explicitly test against specific violations of the assumptions
of an IRT model. The Lagrange Multiplier statistic (LM-statistic) is used to
test differences in fit among two nested models; the most restricted model is
the null model, which is the IRT model tested, and the alternative model is a
more general model, that contains additional freely estimated parameters,
which represent model violations. Under the null model the additional
parameters of the alternative model are fixed to a constant, which is often
equal to zero. So, two models are defined; H0: the null model with a set
of free item and person parameters, η1, and one or more item and person
parameters that are set to a constant value, η2 = c, and Ha: an alternative
model defined by the same item and person parameters, however, both η1
and η2 parameters are estimated freely. The LM-test is used to test the
expected change in model fit between both models, however, the test is
based on the loglikelihood of only the null model.
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Figure 5.4. logit-function for linear and quadratic logistic regression model with
parameter values αi = 1.00, βi = 0.00, γi = −1.00

The LM-test statistic evaluates the slope of the likelihood function,
L, of the full model, with respect to the values of all parameters of the
restricted model. In maximum likelihood estimation the first derivatives
h(ηp) = ∂ logL�∂ηp of the freely estimated parameters will be equal
to zero. When estimating the alternative general model this results in
first derivatives equal to zero, whereas the first derivatives of only the η1
parameters are zero under the null model. The sign of the slope does not
make any difference for the expected change in model fit, however, the
rate at which it is changing, the curvature of the loglikelihood function,
might differ. Therefore the slope is squared, but has to be weighted by the
curvature of the loglikelihood function, the hessian, which can be expressed
as H(ηp, ηq) = ∂2 logL�∂ηpδηq. In the LM-statistic, the weighting by the
curvature is expressed by the observed values of the hessian, taking into
account the influence of estimates of the η1 parameters. In a formula the
LM-statistic is expressed as

LM = h(η2)′Σ−1h(η2), (5.5)

with
Σ = Σ22 − Σ21Σ−1

11 Σ12, (5.6)
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and
Σpq = −∂

2 logL(η)
∂ηpδη

′
q

.

The reciprocal of the negative expectation of the hessian by which the first
derivatives in the LM-statistic are multiplied express the variance of the
maximum likelihood estimators. The matrices

∑
pq can be viewed as the

asymptotic covariance matrices of the estimates (Glas, 1999).
The LM-statistic is asymptotically chi-square distributed with degrees

of freedom equal to the number of additional freely estimated variables
under the alternative model. In this paper, the LM-statistic is used to
detect person fit under the four unfolding models. Before moving on to the
person fit tests the likelihood for the models is explained.

5.3.1 Likelihood

For dichotomous data the likelihood of a response pattern xn is given
by

L(θ, η2 | xn, η1) =
K
Π
i=1
P (θ, η2)xni(1− P (θ, η2))1−xni

where P (θ, η2) is the probability of endorsing an item i (P (Xi = 1 | θ, η)),
by the generalized graded unfolding model, collapsed generalized partial
credit model, collapsed graded response model, or the quadratic logistic
regression model. The loglikelihood is then equal to

logL(θ, η2 | xni, η1) =
K∑
i=1

[xni logP (θ, η2)+(1−xni) log(1−P (θ, η2))] (5.7)

In this study item parameter values will be fixed. The test statistic
becomes

LM(η2) = (h)2

H
(5.8)

in which

h =
K∑
i=1

∂ logL
∂η2

H =
K∑
i=1

−∂2 logL
∂η2

2
+
(
∂2 logL
∂η2∂θ

)2(
∂2 logL
∂θ2

)−1


For derivatives of the loglikelihood see the appendix.
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5.3.2 Lagrange Multiplier tests for person fit

Two person fit tests based on the Lagrange Multiplier statistic were
developed; a test for constancy of theta, and a test for tendency to agree.

LM-test for constancy of theta

During test administration persons may start unmotivated, become
unmotivated (random response), or make mistakes in filling out the
questionnaire (misalignment). This might result in an inconsistent pattern
of item responses on the test. To check whether these forms of misfit take
place the constancy of theta during test administration can be investigated.
To test if the theta value for each person is equal in different parts of the
test, a persons’ response pattern can be divided into a number of subtests
S. In this chapter the responses of persons are divided into two groups
(S = 2).

The LM-test used to investigate constancy of theta compares two
models. The general model for the CGRM is given by

P (Xi = 1) = πi1(αi[θ1 + ysδ]− βi1)− πi2(αi[θ1 + ysδ]− βi2), (5.9)

in which θ1 is the estimated latent trait on the first part of the test. A
dummy variable, ys, is used to describe whether the shift, denoted by δ,
takes place or not. If an item falls in the first subtest S = 1, the dummy
variable is equal to ys = 0, and the dummy variable is equal to ys = 1 if the
item falls in the second subset S = 2. If an item falls in the first subtest no
shift is made, but if the items falls in the second subtest a shift on θ takes
place. The null model states that during the test no shift in θ takes place,
and δ = 0 is assumed. The null model is the model given in equation 5.3.
For the other three models the idea is the same, the null models are the
models described in section 5.2, and the alternative model is the model in
which the thetas of the null model are replaced by θ + ysδ.

The LM-test tests the null hypothesis H0 : δ = 0 against the alternative
hypothesis Ha : δ 6= 0. The LM-test for constancy of theta is expressed by
equation 5.8, in which η2 = δ. For the derivatives of the loglikelihood for
the models see the appendix.

Lagrange Multiplier test for tendency to agree

Other reasons for person misfit are tendency to agree and extreme item
responding (tendency to disagree). If persons have a tendency to agree,
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they endorse more items than other persons from the population, who have
the same trait level. On the other hand, extreme item responding on a
dichotomous item might result in only endorsing items that have an item
location very close to the person location, and endorsing less items that are
located further away of the person location than other persons from the
population, who have the same trait level. To model the tendency to agree
and disagree the response curve of the agree response can be made higher
and broader or lower and smaller respectively. The four unfolding models
have different parameters that define the height and width of the curve,
only the parameter definitions of the GGUM and CGPCM are similar.

Both GGUM and CGPCM model the height (and width) of the curve
by the τi-parameter. To heighten (and broaden) the curve a shift δ in the
τi-parameter has to be made. The alternative model for the CGPCM is
expressed by

P (Xi = 1 | θ) = exp(αi[(θ − βi)− τi − δ)])
1 + exp(αi[(θ − βi)− τi − δ)]) + exp(αi[2(θ − βi)])

.

(5.10)
Under the null model no shift is expected and δ = 0. The null model for the
CGPCM-test is the model as expressed in equation 5.2. The same shift δ in
the τi-parameter is made under the alternative GGUM model in which −τi
in equation 5.1 is replaced by −τi − δ. The null model in the GGUM-case
with δ equal to 0 is equation 5.1.

For the CGRM the heighth (and width) of the curve is expressed in
the distance between the item response curves of πi1 and πi2. To increase
the distance between both curves, and keep the location of the item equal,
a shift δ has to be made in both βi1 and βi2-parameters. This shift is
expressed in the following formula for the alternative model

P (Xi = 1 | θ) = πi1(αiθ − βi1 + δ)− πi2(αiθ − βi2 − δ). (5.11)

The null model for the CGRM with δ = 0 is given in equation 5.3.
The QLOG model expresses the logit as a parabolic function. The height

(and width) of the response function under this model can be changed
through a shift δ in the βi-parameter. The alternative model for QLOG is
given by

P (Xi = 1 | θ) = exp(αiθ + βi + γiθ
2 + δ)

1 + exp(αiθ + βi + γiθ2 + δ) . (5.12)

and the null model under which δ = 0 is given by equation 5.4.
The LM-test for tendency to agree then tests the alternative hypothesis

Ha : δ 6= 0 against the null hypothesis H0 : δ = 0. This test is given by
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equation 5.8, in which η2 = δ. For the derivatives of the log-likelihood for
the four models see the appendix.

5.4 Simulation study

Simulation studies of Type I error rate and power for the LM-tests
for constancy of theta and tendency to agree were conducted. In the
simulation studies fixed item parameters were used. The values of the item
parameters were based on a real 20-item dataset measuring Censorship
(Roberts, 1995). The real dataset was used to estimate person parameters
with the original GGUM program (Roberts, Donoghue, & Laughlin, 2000).
The item responses and the estimated person parameters of the original
GGUM program were fixed at these values and item parameters were re-
estimated for the GGUM model and estimated for each of the other three
unfolding models. These item parameters were used as fixed parameters
for the simulation study. Person parameters for 10, 000 persons were drawn
from a normal distribution with mean zero and variance one. Data were
generated under one model and based on the generated data and fixed item
parameters, person parameters were estimated and LM-tests conducted
under the four models. Type I error rate for both LM-tests, power of both
LM-tests and agreement between models in flagging persons as fitting and
misfitting were studied.

5.4.1 Type I error rate for LM-test of constancy of theta
and LM-test of tendency to agree

In the simulation study on Type I error rate, the probability of rejecting
the null model when this model is true was studied. A nominal significance
level of 5% was used. The number of items, K, was varied from 10 to 80,
in steps of 10. For K = 10 only the parameters of the first 10 items of
the inventory were used, for K = 20, all items of the questionnaire were
used, for K = 40, 60 and 80 the item parameters used were two, three, and
four times the whole set respectively, and for K = 30, 50 and 70 one, two,
and three times the whole set of items plus the first ten items were used
respectively. Data were generated under the null models.
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Table 5.1
Results of Type I error rate study of LM1 and LM2 test

Estimation Model
Generating GGUM CGPCM CGRM QLOG
Model K LM1 LM2 LM1 LM2 LM1 LM2 LM1 LM2
GGUM 10 0.040 0.036 0.049 0.039 0.057 0.047 0.055 0.034

20 0.049 0.046 0.053 0.044 0.051 0.051 0.058 0.048
30 0.053 0.046 0.058 0.044 0.053 0.054 0.062 0.050
40 0.051 0.045 0.054 0.046 0.048 0.062 0.060 0.052
50 0.054 0.048 0.055 0.050 0.050 0.063 0.063 0.057
60 0.046 0.047 0.050 0.051 0.047 0.063 0.055 0.058
70 0.048 0.048 0.050 0.053 0.046 0.072 0.059 0.061
80 0.049 0.052 0.051 0.052 0.048 0.073 0.060 0.066

CGPCM 10 0.037 0.029 0.041 0.032 0.048 0.036 0.040 0.029
20 0.050 0.046 0.051 0.044 0.048 0.043 0.053 0.045
30 0.050 0.054 0.050 0.043 0.044 0.044 0.055 0.055
40 0.051 0.053 0.053 0.049 0.049 0.051 0.059 0.056
50 0.051 0.063 0.052 0.048 0.046 0.050 0.060 0.065
60 0.051 0.061 0.050 0.050 0.046 0.050 0.059 0.063
70 0.050 0.061 0.053 0.047 0.046 0.051 0.062 0.064
80 0.051 0.061 0.053 0.046 0.047 0.054 0.059 0.063

CGRM 10 0.050 0.034 0.057 0.041 0.059 0.040 0.049 0.040
20 0.063 0.059 0.065 0.057 0.056 0.054 0.063 0.064
30 0.060 0.064 0.062 0.052 0.051 0.047 0.063 0.063
40 0.059 0.067 0.058 0.061 0.051 0.053 0.066 0.074
50 0.060 0.083 0.060 0.062 0.051 0.050 0.066 0.085
60 0.061 0.072 0.061 0.064 0.048 0.047 0.067 0.084
70 0.059 0.084 0.059 0.066 0.051 0.049 0.063 0.092
80 0.056 0.083 0.058 0.066 0.048 0.048 0.064 0.093

QLOG 10 0.040 0.032 0.042 0.034 0.050 0.037 0.039 0.031
20 0.051 0.049 0.052 0.047 0.051 0.048 0.047 0.045
30 0.047 0.052 0.047 0.044 0.045 0.049 0.049 0.042
40 0.050 0.051 0.051 0.048 0.047 0.052 0.053 0.047
50 0.049 0.061 0.048 0.054 0.045 0.055 0.051 0.052
60 0.050 0.055 0.049 0.052 0.047 0.055 0.053 0.049
70 0.043 0.058 0.044 0.053 0.039 0.055 0.047 0.046
80 0.046 0.064 0.047 0.055 0.041 0.058 0.050 0.049
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Table 5.1 gives the Type I error rate of the LM-test for constancy of theta
(LM1) and of the LM-test for tendency to agree (LM2). The first column
”Generating model” gives the model under which the data were generated
on K items (column 2). Columns 3 to 10 give the test-results under the
”estimation models”. Proportions of rejections in 1, 000 replications at the
5%-level on the first and second LM-test are given in column 3 and 4 for
GGUM, column 5 and 6 for CGPCM, column 7 and 8 for CGRM, and
column 9 and 10 for QLOG. The results showed that the Type I error rates
for both tests attained the 5% significance level. Estimation with the wrong
model still gave an acceptable Type I error rate for most combinations of
generating and estimation model. Only some minor deviations were found
for the results on the LM2-test for GGUM and QLOG when the CGRM
was the generating model. When the number of items increased the LM2-
test results increased to .08 and .09 for the GGUM and QLOG model
respectively. However, the deviations were still relatively small.

Table 5.2
Results of power study of LM1-test (K=20)

Estimation Model
Generating GGUM CGPCM CGRM QLOG
Model δ LM1 LM2 LM1 LM2 LM1 LM2 LM1 LM2
GGUM 0.5 0.129 0.052 0.137 0.052 0.115 0.063 0.141 0.057

0.8 0.242 0.061 0.257 0.066 0.217 0.073 0.258 0.069
1.0 0.326 0.064 0.349 0.071 0.299 0.075 0.351 0.079
1.2 0.416 0.079 0.442 0.085 0.391 0.092 0.447 0.097

CGPCM 0.5 0.132 0.051 0.142 0.049 0.118 0.053 0.142 0.056
0.8 0.232 0.057 0.251 0.060 0.213 0.066 0.254 0.065
1.0 0.326 0.068 0.352 0.071 0.302 0.076 0.350 0.080
1.2 0.408 0.085 0.444 0.089 0.390 0.092 0.446 0.101

CGRM 0.5 0.133 0.060 0.142 0.058 0.116 0.052 0.144 0.063
0.8 0.232 0.070 0.255 0.072 0.219 0.062 0.253 0.077
1.0 0.326 0.085 0.353 0.089 0.311 0.071 0.344 0.095
1.2 0.410 0.100 0.440 0.108 0.401 0.077 0.435 0.114

QLOG 0.5 0.117 0.049 0.125 0.050 0.105 0.059 0.130 0.049
0.8 0.219 0.058 0.238 0.062 0.200 0.073 0.248 0.061
1.0 0.310 0.069 0.339 0.074 0.288 0.087 0.352 0.075
1.2 0.409 0.076 0.444 0.082 0.384 0.096 0.461 0.086
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5.4.2 Power of LM-test for constancy of theta

Power is the probability of detecting misfit or rejecting the null model
when the alternative model is true for a person. In this simulation study
power of the LM-test on constancy of theta (LM1) was investigated for a
test of 20 and 40 items. For each person data on the first half of the test
were generated under the null model, whereas data on the second half of the
test were generated under the alternative model, with a shift in theta equal
to δ = 0.5, δ = 0.8, δ = 1.0, or δ = 1.2. Data were generated under each
model, and person parameters were estimated and LM-tests were computed
under the four models. Item parameters were equal to the values in the
previous study. Table 5.2 shows the results for a shift in theta for K = 20
and Table 5.3 shows the results for K = 40. The setup of the tables was
similar to the setup of the Type I error rate table. The only difference is
that in column 2 the δ-values for the shift in ability are given. Furthermore
the results in the columns for the LM1-test give the power of the constancy
of theta test, whereas the results in the columns of the LM2-test are the
Type I error rates of the tendency to agree test.

In general, the LM1-test had reasonable power to detect model violations
of constancy of theta. When the number of items and effect size increased
the power increased. The different models showed similar power results in
detecting misfitting persons, independent of the model used for generating
the items, however power under CGPCM and QLOG was slightly higher
than GGUM, which was slightly higher than CGRM. Type I error rate of
the LM2-test for tendency to agree stayed relatively stable when the number
of items increased and slightly increased when the effect size increased,
however, Type I error rate was still maximum around .10. Type I error
rate was slightly higher for GGUM, CGPCM and QLOG when CGRM was
the generating model. However, results were still reasonable.
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Table 5.3
Results of power study of LM1-test (K=40)

Estimation Model
Generating GGUM CGPCM CGRM QLOG
Model δ LM1 LM2 LM1 LM2 LM1 LM2 LM1 LM2
GGUM 0.5 0.193 0.049 0.193 0.051 0.179 0.059 0.198 0.056

0.8 0.398 0.051 0.396 0.059 0.371 0.063 0.394 0.066
1.0 0.532 0.054 0.527 0.069 0.497 0.069 0.524 0.077
1.2 0.656 0.061 0.638 0.090 0.619 0.085 0.641 0.095

CGPCM 0.5 0.191 0.051 0.202 0.046 0.185 0.051 0.205 0.059
0.8 0.394 0.054 0.416 0.049 0.385 0.050 0.414 0.064
1.0 0.529 0.064 0.553 0.060 0.518 0.061 0.551 0.078
1.2 0.653 0.072 0.687 0.070 0.648 0.070 0.678 0.094

CGRM 0.5 0.186 0.067 0.192 0.066 0.179 0.047 0.192 0.079
0.8 0.373 0.071 0.389 0.072 0.378 0.052 0.386 0.088
1.0 0.512 0.076 0.529 0.082 0.527 0.055 0.520 0.100
1.2 0.620 0.087 0.633 0.104 0.650 0.068 0.622 0.122

QLOG 0.5 0.177 0.052 0.184 0.051 0.168 0.054 0.196 0.049
0.8 0.373 0.045 0.394 0.047 0.364 0.053 0.425 0.045
1.0 0.513 0.054 0.535 0.057 0.504 0.069 0.577 0.056
1.2 0.641 0.057 0.669 0.064 0.632 0.071 0.703 0.068

5.4.3 Power of LM-test of tendency to agree

In the simulation study on power of the LM-test of tendency to
agree (LM2) all item responses for all persons were generated under the
alternative model. Equal shifts in δ do not result in the same shift of the
curve under the different models. Comparable shift values were searched
for. They are shown in Table 5.4. Similar to the study on the power of the
LM1 test, data were generated under each model and person parameters
were estimated and LM-tests were computed under the four models for 20
and 40 items.

Results are given in Table 5.5 for K = 20 and in Table 5.6 for K = 40.
Setup of the tables is equal to the setup of the tables of the power study
on the LM1-test, except that the columns labeled LM2 show the power of
the LM2-test, and the columns labeled LM1 show the Type I error rate of
the LM1-test.
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Table 5.4
Comparable values for shift δfor the four models
GGUM CGPCM CGRM QLOG
-0.30 -0.30 0.25 0.30
-0.50 -0.50 0.45 0.50
-0.80 -0.80 0.70 0.80
-1.00 -1.00 0.90 1.00
-1.20 -1.20 1.10 1.20

Table 5.5
Results of power study of LM2-test (K=20)

Estimation Model
Generating GGUM CGPCM CGRM QLOG
Model δ LM1 LM2 LM1 LM2 LM1 LM2 LM1 LM2
GGUM -0.30 0.046 0.064 0.049 0.058 0.048 0.066 0.052 0.056

-0.50 0.042 0.102 0.047 0.089 0.044 0.096 0.051 0.086
-0.80 0.038 0.197 0.040 0.169 0.038 0.165 0.045 0.162
-1.00 0.034 0.283 0.037 0.247 0.034 0.235 0.044 0.239
-1.20 0.032 0.364 0.032 0.326 0.032 0.315 0.039 0.320

CGPCM -0.30 0.045 0.071 0.046 0.062 0.043 0.060 0.049 0.061
-0.50 0.041 0.106 0.043 0.093 0.044 0.093 0.048 0.089
-0.80 0.039 0.197 0.041 0.172 0.038 0.168 0.045 0.170
-1.00 0.035 0.274 0.037 0.244 0.038 0.237 0.041 0.238
-1.20 0.032 0.360 0.032 0.328 0.035 0.309 0.038 0.320

CGRM 0.25 0.057 0.088 0.059 0.078 0.049 0.074 0.057 0.081
0.45 0.054 0.133 0.058 0.116 0.051 0.114 0.060 0.116
0.70 0.048 0.227 0.051 0.200 0.045 0.202 0.054 0.196
0.90 0.048 0.321 0.049 0.285 0.044 0.288 0.053 0.278
1.10 0.038 0.400 0.036 0.365 0.033 0.364 0.041 0.357

QLOG 0.30 0.043 0.073 0.043 0.065 0.042 0.064 0.041 0.062
0.50 0.044 0.117 0.043 0.101 0.039 0.102 0.041 0.097
0.80 0.037 0.206 0.036 0.184 0.034 0.178 0.038 0.180
1.00 0.030 0.281 0.028 0.253 0.028 0.245 0.029 0.248
1.20 0.028 0.385 0.027 0.352 0.027 0.331 0.029 0.347
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Table 5.6
Results of power study of LM2-test (K=40)

Estimation Model
Generating GGUM CGPCM CGRM QLOG
Model δ LM1 LM2 LM1 LM2 LM1 LM2 LM1 LM2
GGUM -0.30 0.047 0.089 0.048 0.084 0.046 0.089 0.057 0.088

-0.50 0.042 0.170 0.044 0.154 0.040 0.146 0.051 0.160
-0.80 0.035 0.351 0.040 0.324 0.037 0.295 0.049 0.333
-1.00 0.028 0.495 0.031 0.462 0.030 0.424 0.041 0.469
-1.20 0.030 0.642 0.034 0.612 0.029 0.567 0.041 0.617

CGPCM -0.30 0.044 0.094 0.045 0.084 0.041 0.080 0.051 0.096
-0.50 0.041 0.173 0.044 0.158 0.041 0.141 0.053 0.168
-0.80 0.033 0.358 0.035 0.339 0.033 0.300 0.045 0.348
-1.00 0.030 0.492 0.034 0.467 0.030 0.421 0.044 0.479
-1.20 0.028 0.618 0.033 0.599 0.029 0.550 0.040 0.606

CGRM 0.25 0.056 0.120 0.056 0.106 0.048 0.094 0.060 0.121
0.45 0.051 0.218 0.052 0.198 0.044 0.182 0.059 0.213
0.70 0.046 0.395 0.047 0.367 0.041 0.349 0.054 0.380
0.90 0.037 0.542 0.040 0.510 0.033 0.490 0.047 0.527
1.10 0.037 0.666 0.042 0.640 0.034 0.623 0.047 0.655

QLOG 0.30 0.045 0.094 0.047 0.086 0.043 0.081 0.051 0.089
0.50 0.040 0.175 0.041 0.164 0.039 0.145 0.046 0.167
0.80 0.032 0.355 0.033 0.337 0.031 0.303 0.038 0.351
1.00 0.026 0.498 0.028 0.477 0.025 0.436 0.034 0.498
1.20 0.022 0.627 0.026 0.613 0.024 0.573 0.030 0.634

It was shown that if number of items increased and if δ increased, the
power of the LM2-test increased. Power of the GGUM estimation model
was slightly higher than for the QLOG and CGPCM, which were slightly
higher than the CGRM. Results were highest for the estimation models
when CGRM was the generating model. Note that this was also the case
for the Type I error rate of the LM2 test. Type I error rate values of the
LM1-test were approximately the significance level of 5%, although values
slightly decreased when δ increased. Values for the QLOG estimation model
were slightly higher than for the other models.
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5.4.4 Agreement between models

To check the robustness of the models, the degree of agreement between
the models to detect fitting and misfitting response patterns is investigated.
Agreement between models was high for all values of δ and K. Table 5.7
and 5.8 give the results of the degree of agreement between models for the
LM-test for constancy of theta, and the LM-test for tendency to agree,
respectively, for 20 and 40 item tests with δ equal to 0.5 and 1.0. Results
for the LM1 power studies showed that agreement between all models was
relatively stable when number of items increased, and decreased when
δ increased. Results were similar under the generating models GGUM,
CGPCM, and QLOG, and slightly lower when CGRM was the generating
model. The degree of agreement between QLOG and the other models was
highest in almost all analyses. Results on the power tests on LM2 showed
that the agreement on the LM2 test slightly decreased when the number
of items or delta increased. Results over generating models were similar,
however for 40 items the CGRM results were slightly higher. Under all
analyses highest degree of agreement was found between QLOG, GGUM
and CGPCM.

5.5 Discussion

In this paper two person fit statistics based on the Lagrange Multiplier
statistic were developed for four unfolding models for typical performance
data. Simulation studies showed that Type I error rates on the LM-test
for constancy of theta were reasonable for all models, and power increased
when K and δ increased. QLOG had the highest degree of agreement with
the other models, however, Type I error rate was highest as well. The
Type I error rate for the LM-test for tendency to agree was around 5%, but
increased slightly when misfit in constancy of theta was modeled. Power
on the LM-test for tendency to agree increased with K and δ. Degree of
agreement was slightly higher between GGUM, CGPCM and QLOG than
between these three models and CGRM. Thus, in general the results of the
simulation studies on both LM-tests were similar for all four models, and
there is evidence that the models can be seen as comparable.

The present paper is a first contribution to detect person misfit under
four unfolding IRT models. Only two specific types of person misfit are
discussed, which are specified by the alternative model. This method can
be used to develop tests to investigate other types of person misfit, like local
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Table 5.7
Correlations between models for LM1 test
Generating Estimation Models K = 20 K = 40
Model δ = 0.5 δ = 1.0 δ = 0.5 δ = 1.0
GGUM GGUM - CGPCM 0.932 0.879 0.923 0.870

GGUM - CGRM 0.945 0.900 0.942 0.890
GGUM - QLOG 0.964 0.934 0.961 0.925
CGPCM - CGRM 0.932 0.882 0.932 0.885
CGPCM - QLOG 0.946 0.910 0.942 0.909
CGRM - QLOG 0.962 0.927 0.956 0.920

CGPCM GGUM - CGPCM 0.935 0.887 0.920 0.868
GGUM - CGRM 0.947 0.902 0.944 0.899
GGUM - QLOG 0.965 0.937 0.961 0.935
CGPCM - CGRM 0.937 0.883 0.928 0.876
CGPCM - QLOG 0.946 0.910 0.939 0.900
CGRM - QLOG 0.964 0.930 0.959 0.930

CGRM GGUM - CGPCM 0.920 0.867 0.916 0.863
GGUM - CGRM 0.941 0.883 0.935 0.901
GGUM - QLOG 0.962 0.931 0.955 0.932
CGPCM - CGRM 0.929 0.869 0.928 0.871
CGPCM - QLOG 0.937 0.890 0.935 0.901
CGRM - QLOG 0.955 0.914 0.951 0.913

QLOG GGUM - CGPCM 0.931 0.879 0.919 0.883
GGUM - CGRM 0.944 0.896 0.941 0.907
GGUM - QLOG 0.964 0.937 0.963 0.942
CGPCM - CGRM 0.932 0.884 0.928 0.891
CGPCM - QLOG 0.941 0.902 0.937 0.908
CGRM - QLOG 0.961 0.925 0.952 0.929
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Table 5.8
Correlations between models for LM2 test
Generating Estimation Models K = 20 K = 40
Model δ = 0.5 δ = 1.0 δ = 0.5 δ = 1.0
GGUM GGUM - CGPCM 0.966 0.938 0.954 0.935

GGUM - CGRM 0.938 0.892 0.921 0.875
GGUM - QLOG 0.977 0.958 0.967 0.955
CGPCM - CGRM 0.948 0.914 0.918 0.878
CGPCM - QLOG 0.977 0.964 0.969 0.957
CGRM - QLOG 0.945 0.909 0.928 0.888

CGPCM GGUM - CGPCM 0.967 0.946 0.958 0.935
GGUM - CGRM 0.938 0.893 0.931 0.888
GGUM - QLOG 0.976 0.961 0.968 0.953
CGPCM - CGRM 0.951 0.916 0.935 0.887
CGPCM - QLOG 0.978 0.966 0.970 0.952
CGRM - QLOG 0.946 0.906 0.939 0.897

CGRM GGUM - CGPCM 0.955 0.934 0.950 0.939
GGUM - CGRM 0.931 0.897 0.922 0.901
GGUM - QLOG 0.974 0.958 0.964 0.958
CGPCM - CGRM 0.940 0.908 0.916 0.900
CGPCM - QLOG 0.970 0.960 0.963 0.954
CGRM - QLOG 0.939 0.903 0.928 0.907

QLOG GGUM - CGPCM 0.969 0.948 0.958 0.940
GGUM - CGRM 0.946 0.903 0.933 0.889
GGUM - QLOG 0.981 0.965 0.972 0.957
CGPCM - CGRM 0.951 0.923 0.933 0.893
CGPCM - QLOG 0.980 0.968 0.970 0.957
CGRM - QLOG 0.952 0.913 0.939 0.900
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independence and multidimensionality. Furthermore it would be important
to compare person fit statistics for unfolding models based on the LM-test
with person fit statistics formerly developed for dominance IRT models as
the likelihood statistic lz (Drasgow, Levine, &Williams, 1985), the Pearson-
type W -statistic (Wright & Stone, 1979), and Snijders’ (2001) person fit
test lz.

Furthermore, results of the simulation studies show that the power to
detect misfitting persons who show small shifts in constancy of theta or
tendency to agree is low for 20-item and 40-item inventories. Typical
performance measures often consist of only a small number of items (< 20).
An option to detect person misfit better, and enhance power, might be
to take into account information on external variables. This was already
shown helpfull for person fit tests for dominance IRT models in Glas and
Dagohoy (2007).

Although a lot is left to be done, at this time the two person fit statistics
developed in this chapter show that detection of persons with inconsistent
response patterns, and tendency to (dis)agree is possible under unfolding
IRT models making use from LM-statistics.

Appendix

Detailed characterizations of the test statistics

The Lagrange Multiplier statistic (LM-statistic) for the differences in fit
between two nested models is defined by

LM = h(η2)′Σ−1h(η2). (5.13)

The test statistic is expressed by first and second derivatives of the
loglikelihood function for a response pattern xn on the alternative model.
The loglikelihood of a response pattern for dichotomous data on the general
model is given by

logL =
K∑
i=1

[xni logP (θ, η2) + (1− xni) log (1− P (θ, η2))] , (5.14)

where P (θ, η2) is the probability of endorsing item i, P (Xi = 1 | θ), by the
generalized graded unfolding model (GGUM), collapsed generalized partial
credit model (CPCM), collapsed graded response model (CGRM), or the
quadratic logistic regression model (QLOG). The first derivative of this
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loglikelihood with respect to a parameter is given by

∂ logL
∂η

=
K∑
i=1

P
′(xni − P )
P (1− P ) , (5.15)

and the second derivative of the loglikelihood with respect to the parameters
is given by

∂2 logL
∂η2 = −

K∑
i=1

(
P
′
)2

P (1− P ) . (5.16)

Derivatives of the loglikelihood for Lagrange Multiplier test
for constancy of theta

Let the first and second derivatives of the log-likelihood with respect to
θ be defined as follows

dij = ∂ logL
∂θ

, (5.17)

and
Dij = ∂2 logL

∂θ2 . (5.18)

The first and second derivatives of the log-likelihood with respect to
parameter δ are then equal to

∂ logL
∂δ

= ysdij , (5.19)

∂2 logL
∂θ∂δ

= ysDij , (5.20)

and
∂2 logL
∂δ2 = y2

sDij (5.21)

For the four models the dij and Dij differ. The first and second derivatives
with respect to θ for all four models are given here. Derivatives for the
loglikelihood with respect to δ can be computed by equations 5.19 to 5.21.

Derivatives for the Generalized Graded Unfolding Model

We introduce a concise notation

e1 = exp(αi[(θ + ysδ − βi)− τi]),
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e2 = exp(αi[2(θ + ysδ − βi)− τi]),

and
e3 = exp(αi[3(θ + ysδ − βi)]).

The first and second derivatives for the loglikelihood with respect to θ are

∂ logL
∂θ

=
K∑
i=1

αi[e1− 2e1e3 + 2e2− e2e3][xi − P ]
(e1 + e2)(1 + e3) , (5.22)

and
∂2 logL
∂θ2 =

K∑
i=1

[αi(e1− 2e1e3 + 2e2− e2e3)]2

(e1 + e2)(1 + e3)(1 + e1 + e2 + e3)2 . (5.23)

Derivatives for the Collapsed Generalized Partial Credit Model

We introduce a concise notation

e1 = exp(αi[(θ + ysδ − βi)− τi]),

and
e2 = exp(αi[2(θ + ysδ − βi)]).

Then the first and second derivatives for the loglikelihood with respect to
θ are

∂ logL
∂θ

=
K∑
i=1

αie1(1− e2)[xi − P ]
e1(1 + e2) , (5.24)

and
∂2 logL
∂θ2 =

K∑
i=1

[αie1(1− e2)]2

e1(1 + e2)(1 + e1 + e2)2 . (5.25)

Derivatives for the Collapsed Graded Response Model

When the abbreviation of the logistic function is given by

π (x) = exp(x)
1 + exp(x) ,

and xi1 = αi(θ+ysδ−βi1), and xi2 = αi(θ+ysδ−βi2), the first and second
derivatives for the loglikelihood with respect to θ are

∂ logL
∂θ

=
K∑
i=1

[αiπi1 (1− πi1)− αiπi2 (1− πi2)][xni − (πi1 − πi2)]
(πi1 − πi2) (1− πi1 + πi2) , (5.26)
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and
∂2 logL
∂θ2 =

K∑
i=1

[αiπi1 (1− πi1)− αiπi2 (1− πi2)]2

(πi1 − πi2) (1− πi1 + πi2) . (5.27)

Derivatives for the Quadratic Logistic Regression Model

The first and second derivatives for the loglikelihood with respect to θ
are

∂ logL
∂θ

=
K∑
i=1

(αi + 2γiθ + 2γiyδ)(xni − P ), (5.28)

and
∂2 logL
∂θ2 =

K∑
i=1

(αi + 2γiθ + 2γiyδ)2PQ. (5.29)

Derivatives of loglikelihood for Lagrange Multiplier test for
tendency to agree

For the four models the shifts δ are linked to different parameters, only
the parameter-shifts under the GGUM and CGPCM are similar. No general
formula for the derivatives can be given, so the derivatives for each model
are explained separately.

Derivatives for the Generalized Graded Unfolding Model

A concise notation is used

e1 = exp(αi[(θ − βi)− τi − δ]),

e2 = exp(αi[2(θ − βi)− τi − δ]),

and
e3 = exp(αi[3(θ − βi)]).

The first derivatives of the loglikelihood with respect to δ and second
derivatives for the loglikelihood with respect to θ and δ are equal to

∂ logL
∂δ

= −
K∑
i=1

(xni − P ), (5.30)

∂2 logL
∂δ2 =

K∑
i=1
PQ, (5.31)
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∂2 logL
∂θ∂δ

= −
K∑
i=1

αi(e1− 2e1e3 + 2e2− e2e3)
(1 + e1 + e2 + e3)2 , (5.32)

and
∂2 logL
∂θ2 =

K∑
i=1

[αi(e1− 2e1e3 + 2e2− e2e3)]2

(e1 + e2)(1 + e3)(1 + e1 + e2 + e3)2 . (5.33)

Derivatives for the collapsed Generalized Partial Credit Model

A concise notation is used

e1 = exp(αi[(θ − βi)− τi − δ]),

and
e2 = exp(αi[2(θ − βi)]).

The first derivative for the loglikelihood with respect to δ and second
derivatives for the loglikelihood with respect to δ and θ are

∂ logL
∂δ

= −
K∑
i=1

(xni − P ), (5.34)

∂2 logL
∂δ2 =

K∑
i=1
PQ, (5.35)

∂2 logL
∂δ∂θ

= −
K∑
i=1

αie1(1− e2)
(1 + e1 + e2)2 , (5.36)

∂2 logL
∂θ2 =

K∑
i=1

[αie1(1− e2)]2

e1(1 + e2)(1 + e1 + e2)2 . (5.37)

Derivatives for the collapsed Graded Response Model

When the abbreviation of the logistic function is given by

π(x) = exp(x)
1 + exp(x) ,

and xi1 = αi(θ−βi1 + δ) and xi2 = αi(θ−βi2− δ) and , the first derivative
with respect to δ and second derivatives for the loglikelihood with respect
to δ and θ are

∂ logL
∂δ

=
K∑
i=1

[πi1 (1− πi1) + πi2(1− πi2)][xni − (πi1 − πi2)]
(πi1 − πi2) (1− πi1 + πi2) , (5.38)
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∂2 logL
∂δ2 =

K∑
i=1

[πi1 (1− πi1) + πi2(1− πi2)]2

(πi1 − πi2) (1− πi1 + πi2) , (5.39)

∂2 logL
∂δ∂θ

=
K∑
i=1

αi([πi1 (1− πi1)]2 − [πi2 (1− πi2)]2)
(πi1 − πi2) (1− πi1 + πi2) , (5.40)

and
∂2 logL
∂θ2 =

K∑
i=1

(αi [πi1 (1− πi1)− πi2 (1− πi2)])2

(πi1 − πi2) (1− πi1 + πi2) . (5.41)

Derivatives for the quadratic logistic regression model

The first derivatives for the loglikelihood with respect to δ and second
derivatives for the loglikelihood with respect to δ and θ are

∂ logL
∂δ

=
K∑
i=1

(xni − P ), (5.42)

∂2 logL
∂δ2 =

K∑
i=1
PQ, (5.43)

∂2 logL
∂δ∂θ

=
K∑
i=1

(αi + 2γiθ)PQ, (5.44)

and
∂2 logL
∂θ2 =

K∑
i=1

(αi + 2γiθ)2 PiQi. (5.45)
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Item fit for unfolding IRT
models

6.1 Introduction

Analogous to dominance IRT models, unfolding IRT models follow two
major assumptions: unidimensionality and local independence. Besides
these two major assumptions the shape of the item response function or
item characteristic curve (ICC) is assumed to be single-peaked. In this
chapter, the focus is on items which require a dichotomous response, that
is, the item can be endorsed or not endorsed. Persons only endorse an item
if the location of the person parameter is close to the mode of the ICC. Such
unfolding models are used to describe measures on typical performance
inventories, like attitude and personality measures.

The first major assumption, unidimensionality, implies that the answers
to items are based on only one underlying construct. Items share variance
because of this one underlying construct, and after taking into account
the score on this construct, covariance between item responses of a single
respondent are assumed to be zero. This implies that item responses are
independent given the value of the latent variable. The only dependency
between items over persons is attributable to the dimension they are
assumed to measure. The assumption on the shape of the ICC means that
the probability of endorsing an item is expected to increase when trait level
increases up till a certain point where the curve reaches its maximum, that
is, the top of the curve or the ideal point. The curve decreases when moving
along on the latent trait continuum from this ideal point onward. Items are
therefore single-peaked, monotone increasing or monotone decreasing. For
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extremely negatively formulated items curves are decreasing, because there
are no persons located on the trait continuum lower than the item location,
and for extremely positively formulated items the ICCs are increasing,
because there are no persons located on the trait continuum higher than
the item location. For items with locations in between these two extremes
the single-peaked item response curve will represent the items.

In this study, four unfolding IRT models following these assumptions
are investigated; the generalized graded response model (GGUM; Roberts,
Donoghue, & Laughlin, 2000), the collapsed generalized partial credit
model (CGPCM), the collapsed graded response model (CGRM), and a
quadratic logistic regression model (QLOG). The first three models are
collapsed versions of well-known polytomous IRT models. The GGUM is
the best known and generally used model. The CGPCM and the CGRM
are introduced here as simplified versions of the GGUM. The fourth model
is introduced here as a straightforward application of logistic regression
models.

Although, a lot of research is done on item fit for dichotomous and
polytomous dominance IRT models (for an overview, see Glas & Suarez-
Falcon, 2003), very little research is done for unfolding models. Lack of
item fit emerges when the item responses do not follow the assumptions
of the model. Items might not be unidimensional, might not be locally
independent, or the shape of the ICCs is not as expected under the model.

Two types of item misfit for unfolding models are studied in this chapter;
differential item functioning (DIF) and misfit of the ICC. DIF is a difference
in item response behavior between equally proficient members of two or
more groups. DIF occurs when external variables that should be irrelevant
influence the responses to an item for persons with the same value on
the underlying trait. Race, gender, and age may be examples. If DIF is
present and the external variable is used as a background variable to form
homogeneous subgroups, the observed values of the different groups do not
follow the expected values under the model. That is, the shape of the ICC
does not describe the item responses for these groups.

Item fit will be investigated using Lagrange Multiplier tests. These tests
have formerly been used to detect DIF, violation of local independence, and
violation of the shape of the ICCs for dominance models (Glas, 1998, 1999;
Glas & Suarez-Falcon, 2003). The LM tests are defined in a marginal
maximum likelihood (MML) framework.

In the following, first the four unfolding models will be explained.
Second, a general framework for estimation and testing will be discussed.
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Third the LM-tests to investigate item fit will be object of discussion,
followed by a simulation study and a real data example. The chapter is
finished with some conclusions and a discussion.

6.2 Unfolding IRT models

In this study, four unfolding IRT models for dichotomously scored items
will be used; the generalized graded unfolding model (GGUM; Roberts,
Donoghue, & Laughlin, 2000), and three alternatives: the collapsed
generalized partial credit model (CGPCM), the collapsed graded response
model (CGRM; Korobko, 2007), and the quadratic logistic regression model
(QLOG). The probabilities of endorsement (response equals 1) of an item
is given by P (Xi = 1 | θ), in which the stochastic variable Xi denotes the
response on item i and θ is the latent trait variable for a person. The test
consists of i = 1, ...,K items.

6.2.1 Generalized Graded Unfolding Model

The generalized graded unfolding model (GGUM) is a collapsed version
of a 4-category generalized partial credit model (GPCM; Muraki, 1992).
The idea behind GGUM is that the two observed responses (agree and
disagree) on an item are the result of collapsing four latent response
categories following the GPCM. The four latent response categories are
ordered as disagree from below, agree from below, agree from above, and
disagree from above. Persons can both agree with a statement, and disagree
with a statement for one out of two reasons. The two most extreme latent
responses, disagree from below and disagree from above, form the observed
disagree response, and the two “middle” latent responses, agree from below
and agree from above, form the observed agree response. The probability
of endorsement of a statement is equal to

P (Xi = 1 | θ) = exp(f) + exp(g)
1 + exp(f) + exp(g) + exp(h) , (6.1)

in which

f = αi((θ − βi)− τi),
g = αi(2(θ − βi)− τi),
h = αi(3(θ − βi)).

The parameters αi (αi > 0) and τi (τi < 0) are parameters for the
discrimination and the subjective response category threshold of the item,
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and together describe the shape of the ICC. The location of the ICC is
defined by the parameter βi. This parameterization is according to the
original GGUM model of Roberts, Donoghue, and Laughlin (2000).

6.2.2 Collapsed Generalized Partial Credit Model

The collapsed generalized partial credit model (CGPCM) is a
simplification of GGUM. Also, it is a straightforward generalization of
the collapsed partial credit model by Verhelst and Verstralen (1993). The
idea of not endorsing a statement under the CGPCM is similar to the
idea behind GGUM, however, the endorsement of a statement is modeled
differently. The CGPCM describes the observed dichotomous response as
a collapsed version of a 3-category GPCM with latent response options
disagree from below, agree, and disagree from above. The idea behind this
model is that persons can only agree for one reason; because their person
location is close to the item location. The observed disagree response is
the sum of the disagree from below response and the disagree from above
response. The equation for the probability of endorsement of a statement
is given by

P (Xi = 1 | θ) = exp(k)
1 + exp(k) + exp(l) , (6.2)

in which

k = αi((θ − βi)− τi),
l = αi(2(θ − βi)).

The parameters have the same interpretation as under GGUM, so βi defines
the location of the ICC, and αi(αi > 0) and τi(τi < 0) define the shape of
the ICC.

6.2.3 Collapsed Graded Response Model

The probability of endorsement of a statement for the collapsed graded
response model (CGRM; Korobko, 2007) can be expressed by

P (Xi = 1 | θ) = πi1(m)− πi2(n), (6.3)

in which

m = αiθ − βi1,
n = αiθ − βi2,
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and
π(y) = exp(y)

1 + exp(y) .

The CGRM is a collapsed version of a latent 3-category GRM (Samejima,
1969), based on the same idea as the idea behind the CGPCM. Persons
endorse an item because the item is located close to their ideal point,
whereas they do not endorse an item because the item is located too far
away from their ideal point. This may be for two reasons, they are located
too far below the item location; disagree from below, or their location is too
far above the item location, disagree from above. Parameter αi (αi > 0)
describes the discrimination of the item, and βi1 is equal to the item location
βi minus the items threshold τi, while βi2 is defined as the item location
βi plus the threshold τi. So, the two parameters βi1 and βi2are ordered
(βi1 < βi2) and influence both item location and shape of the ICC.

6.2.4 Quadratic Logistic Regression Model

The quadratic logistic regression model (QLOG) is a different model
than the models described above. QLOG is not a collapsed version of a
polytomous dominance IRT model, but is based on a logistic regression
equation. When it is expected that only persons whose person location is
close to the item location will endorse an item, the curves are single-peaked.
To get a curved function the logit of the regression model will have to follow
that shape. This is the case when the logit is equal to a quadratic function.
Then the probability of endorsement is equal to

P (Xi = 1 | θ) = exp(o)
1 + exp(o) , (6.4)

in which
o = αiθ + βi + γiθ

2.

In this equation the βi and γi(γi < 0) parameters describe the shape of the
response curve, whereas the αi parameter defines the location.

6.3 A general framework for estimation and
testing

Estimation of the parameters of the models will be done in the marginal
maximum likelihood (MML) framework (Bock & Aitkin, 1981) and testing
of the models will be done in the framework of the LM test.
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6.3.1 Estimation of parameters

Let η represent all item parameters under the specified model.
Maximizing the joint likelihood of both item and person parameters does
not lead to consistent estimates. However, a solution is given by using
the assumption that the person parameters are random variables from a
probability distribution with density g(θn). In this chapter a standard
normal distribution is assumed. Under this assumption MML estimation
can be used to estimate the item parameters. The marginal maximum
likelihood is given by

L(η) =
N∏
n=1

ˆ
P (xn | θn, η)g(θn)dθn (6.5)

in which P (xn | θn, η) denotes the probability of response pattern xn.
The log of this marginal likelihood is maximized with respect to the item
parameters. Details are given in the appendix.

The item parameters are estimated using an iterative procedure based on
the Expectation-Maximization (EM) algorithm (Dempster, Laird & Rubin,
1977). Gauss-Hermite Quadrature with 40 quadrature points was used for
the evaluation of the integrals.

6.3.2 Testing of models

The tests to detect item fit are based on the Lagrange Multiplier statistic
(LM-statistic; Aitchison & Silvey, 1958). Two models are specified, and the
difference in model fit between the two models is investigated. One model
is a restricted model, or null model, which in this chapter is one of the
IRT models described above. The other model is the alternative model.
The alternative model is analogous to the restricted model, but has one
or more additional parameters η2. So the parameters can be divided into
two groups, the parameters η1 of the restricted model, and the additional
parameters η2. In the restricted model, the η2 parameters can be seen as
parameters which are fixed to zero.

The LM-statistic is evaluated with MML estimates of the parameters η1
of the restricted model. The LM-statistic weights the first-order derivatives
of the loglikelihood function h(η2) (the slope of the loglikelihood function
evaluated at the fixed parameter values η2 using the estimated parameter
values η1), with its covariance matrix Σ. The LM-statistic is given by

LM = h(η2)′Σ−1h(η2), (6.6)

114



Item fit for unfolding IRT models

with
Σ = Σ22 − Σ21Σ−1

11 Σ12,

and

Σpq = −∂
2 logL(η)
∂ηpδη

′
q

,

for p, q = 1, 2. The first-order derivatives of the parameters η1 are usually
available when the parameters are estimated by MML. They are given
in the appendix for all four models. The second-order derivatives of the
loglikelihood function, −∂2 logL(η)/∂ηp∂ηq, can be computed as

Σpq ≈
∑
n

E

[
∂

∂η
log p(xn | θ, η)|xn, η

]
E

[
∂

∂η
log p(xn | θ, η)|xn, η

]t
. (6.7)

∑
can be viewed as an approximation of the observed information matrix

(Mislevy, 1986). And so, matrix Σ produces the asymptotic variance-
covariance matrix of the estimates of h(η2), based on only the first-order
derivatives of the likelihood function. The LM-statistic has an asymptotic
χ2-distribution with degrees of freedom equal to the number of parameters
in η2.

An LM test for differential item functioning

When items show DIF this implies that, conditional on θ, the response
probabilities differ across groups. Reasons for DIF can be that the item
locations are ordered in a different way in the two groups, or that items
are less discriminating in one group compared to the other groups. Two
groups are defined by s = 1 (i.e. men) and s = 2 (i.e. women). The
question is whether the responses on a certain item can be modeled in both
groups by the same unfolding IRT model (null hypothesis) or that two
different models are necessary (alternative hypothesis). The alternative
model entails a shift in one or more parameters. All three item parameters
might be influenced by DIF. The differences in item parameters between
groups can be modelled by shifts δ1, δ2, and δ3 for item location, item
discrimination, and item threshold respectively. It is, of course, also
possible to develop an LM-test targeted at the individual parameters δ1,
δ2 or δ3, but this is not considered here; we develop an omnibus test for
the three parameters simultaneously. The alternative model uses a dummy
variable yn to describe group membership. If a person belongs to group
s = 1 the dummy variable takes the value yn = 0. If a person belongs to
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group s = 2 the dummy variable has value yn = 1. The alternative model
for the GGUM can then be expressed by Formula 6.1, with

f = (αi + ynδ2) [(θ − (βi + ynδ1))− (τi + ynδ3)] , (6.8)
g = (αi + ynδ2) [2(θ − (βi + ynδ1))− (τi + ynδ3)] , (6.9)
h = (αi + ynδ2) [3(θ − (βi + ynδ1))] . (6.10)

For the CGPCM the alternative model is expressed by Formula 6.2 with

k = (αi + ynδ2) [(θ − (βi + ynδ1))− (τ + ynδ3)] , (6.11)
l = (αi + ynδ2) [2(θ − (βi + ynδ1))] . (6.12)

Shifts in the CGRM are modeled by Formula 6.3 with

m = (αi + ynδ2) [θ − (βi1 + ynδ1)] , (6.13)
n = (αi + ynδ2) [θ − (βi2 + ynδ3)] . (6.14)

Lastly for the QLOG model, the alternative model in which a shift takes
place is modeled by Formula 6.4 with

o = (αi + ynδ1)θ + (βi + ynδ3) + (γi + ynδ2)θ2. (6.15)

The first-order derivatives of the loglikelihood for all four models, which
have to be used in the calculations for the LM-test are given in the
appendix. The LM-test checks whether there is DIF or not. The null
model and the alternative models are compared. In case there is no DIF
the null hypothesis H0 : η2 = δ1 = δ2 = δ3 = 0 holds and the expected
item scores are the same in both subgroups. In this case the data in both
groups can be described by the models as described in equations 6.1 – 6.4.
If there are differences in expected item scores between both groups the
alternative hypothesis may be Ha : η2 = δ1 6= 0 or Ha : η2 = δ2 6= 0 or
Ha : η2 = δ3 6= 0 or a combination of two or three of the alternative models.
The statistic to investigate DIF has an asymptotic χ2distribution with 3
degrees of freedom.

An LM test for shape of item characteristic curve

In general, the development of the LM test for the shape of the ICC is
along the same lines as the development for the LM test for DIF. However,
there is a difference. The alternative DIF model in itself is a reasonable
alternative for the restricted null model, that is, the original IRT model.
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The alternative model is analogous to the null model with group-specific
parameters for some of the items. The alternative model in the test for the
ICCs is in itself not very realistic; it will become clear that it essentially
plays the role of a diagnostic tool to assess the appropriateness of the
assumed ICC. Similar as in the DIF test, the test for shape of the item
characteristic curve partitions the population sample into a number of
subgroups. The sample is partitioned based on persons’ score levels on
the test. The test measures whether the observed item responses for each
subgroup are conform the predicted responses based on the model. It might
be that an item is expected to be single-peaked, but persons on the higher
end of the trait continuum do endorse this item because they are located
higher on the trait than the location of the item, resulting in answers to
statements according to a monotone increasing model.

The idea behind this test is that all items are ordered based on their
location on the latent trait continuum. There is one item of interest, the
target item labeled i, while the other items are labeled j = 1, 2, ..., i −
1, i + 1, ...,K, and their response pattern is labeled x

(i)
n . However, in the

present case, we do not condition on the number-correct score as is done for
dominance IRT models (Glas, 1999), but on the mean restscore on all items
except the target item. This mean item restscore m(x(i)) is calculated for
each item, and based on this score the latent ability continuum is divided
into a number of segments. If we order all items on the trait continuum and
give them a rank number based on their position, the sum of all endorsed
item indices can be computed and be used as the sum item restscore index.
The mean item restscore is equal to the sum of the endorsed item indices
divided by the total number of endorsed rest items,

m(x(i)
n ) =

∑
j 6=i jxnj∑
j 6=i xnj

.

The range of mean item restscores is used to select persons for Si disjoint
subgroups, in which i indicates the partition for the specific target item.
For each item, Si subgroups are formed. In the present chapter, we
use the same number of subgroups per item so the index i is dropped.
Further, we use three subgroups: one with low mean item restscores, one
with medium mean item restscores and one for high mean item restscores.
The variable w(s, x(i)

n ) is used as an indicator function to express if the
mean item restscore of the item response pattern x

(i)
n is in score range s
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(s = 1, ..., S;S = 3) or not, that is,

w(s, x(i)
n ) =

{
1 if ms−1 ≤ m(x(i)

n ) < ms
0 otherwise.

To evaluate the form of the item characteristic curve the observed
probability of a correct response is compared to the expected probability
under the null model. Under the alternative model it is expected that the
null model does not hold for one or more groups. Groups may change
in difficulty parameter, discrimination parameter, or threshold parameter.
Therefore shifts on all three parameters in all S subgroups are introduced
in the alternative models: δs1 for location, δs2 for discrimination, and δs3
for threshold (s = 2, ..., S). Note that s = 1 is excluded to identify the
alternative model. That is, subgroup s = 1 is used as a baseline. Proceeding
analogous to the test for DIF, dummy variables are introduced such that
yns = 1 if respondent n belongs to subgroup s and the alternative model
for the GGUM can then be expressed by Formula 6.1, with

f = αi((θ − βi)− τi1) +
S∑
s=2

yns(δs2((θ − δ1)− δs3)), (6.16)

g = αi(2(θ − βi)− τi1) +
S∑
s=2

yns(δs2(2(θ − δs1)− δs3)), (6.17)

h = αi(3(θ − βi − ynδi)) +
S∑
s=2

yns(δs2(3(θ − δs1))). (6.18)

Under the alternative model the probability of a response pattern is given
by

P (xn | θn, η) = P (xi | w(s, x(i)
n ), θn, η1, η2)P (x(i)

n | θn, η1). (6.19)

The definitions for the other three models are analogous. For all four models
the first-order derivatives of the loglikelihood, which have to be used in the
calculations for the LM-test, are given in the appendix.

Under the null hypothesis it is expected that the observed score
responses in each group are equal to the predicted score responses on the
target item. The predicted responses under the null model are given in
equations 6.1 to 6.4. The δ-values for the item are then assumed to be zero;
H0 : δ1s = δ2s = δ3s = 0 (s = 2, ..., S). The alternative hypothesis states
that one group, or all groups differ with respect to the location parameter
Ha : δ1s 6= 0, the discrimination parameter Ha : δ2s 6= 0, the threshold
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parameter Ha : δ3s 6= 0, or a combination of two or all three parameters for
one or all groups. The LM-test checks whether the null model or alternative
model holds. The statistic has an asymptotic χ2-distribution with 3(S−1)
degrees of freedom.

6.4 Simulation studies

Simulation studies were conducted to assess the Type I error rate and
the power of the LM-tests for DIF and the shape of the ICC under the four
models. In the studies, the test length, K, was varied from 10, to 20, and
30 items. To generate data with comparable response probabilities under
the four models , the following procedure was used. Item parameters were
generated for different test lengths for the GGUM model, similar to the
procedure used by Roberts, Donoghue, and Laughlin (2002). The location
parameters, βi, were equally spread over the continuum and ranged from
−2.0 to 2.0. Shape parameters, αi and τi, were both drawn from a uniform
distribution as follows. For the αi-parameter the values were in between 0.5
and 2.0, and for the τi-parameter values were between −1.4 and −0.4. Data
were generated under GGUM for all three test lengths for 2, 000 persons
drawn from the standard normal distribution. Based on these data item
parameter values for CGPCM, CGRM and QLOG were estimated. These
item parameters and the chosen item parameters for GGUM were used to
generate data. The person parameters were drawn from a standard normal
distribution.

6.4.1 Type I error rate for LM-test for DIF and shape of
ICC

The first simulation study investigated Type I error rate for the LM-
statistics under the four models. For each model, data were simulated
using item and person parameters as specified above. Then the item
parameters were estimated back using MML estimation and the two LM-
tests were computed for all items. This process of generating data and
person parameters and subsequently estimating parameters and computing
statistics was replicated 100 times in each condition. A nominal significance
level of 5% was used.

Type I error rate was investigated over all three test lengths for 500
to 4, 000 persons with steps of 500 persons. In Table 6.1, the proportion
of significant results aggregated over all K items in the test and over 100
replications are given. The first two columns contain the number of items
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and the number of persons. In the next eight columns results on LM-test for
differential item functioning (LM1) and for shape of the item characteristic
curve (LM2) are given for GGUM (column 3 and 4), CGPCM (column 5 and
6), CGRM (column 7 and 8), and QLOG (column 9 and 10), respectively.

Table 6.1
Type I error rate of the LM-statistics

GGUM CGPCM CGRM QLOG
K N LM1 LM2 LM1 LM2 LM1 LM2 LM1 LM2
10 500 0.218 0.448 0.172 0.413 0.156 0.334 0.127 0.262

1000 0.183 0.396 0.095 0.178 0.082 0.170 0.070 0.101
1500 0.128 0.314 0.075 0.139 0.059 0.078 0.060 0.070
2000 0.146 0.313 0.067 0.089 0.057 0.099 0.046 0.093
2500 0.113 0.233 0.054 0.072 0.063 0.063 0.064 0.076
3000 0.081 0.229 0.039 0.044 0.050 0.069 0.044 0.064
3500 0.093 0.223 0.046 0.053 0.054 0.068 0.056 0.061
4000 0.128 0.236 0.067 0.087 0.042 0.052 0.053 0.063

20 500 0.180 0.605 0.225 0.584 0.227 0.656 0.192 0.711
1000 0.085 0.281 0.096 0.279 0.071 0.201 0.079 0.213
1500 0.073 0.231 0.069 0.126 0.074 0.133 0.072 0.104
2000 0.069 0.178 0.049 0.127 0.053 0.084 0.076 0.107
2500 0.066 0.225 0.049 0.085 0.058 0.087 0.056 0.095
3000 0.067 0.167 0.059 0.083 0.056 0.087 0.060 0.076
3500 0.070 0.148 0.051 0.091 0.058 0.077 0.047 0.092
4000 0.061 0.137 0.045 0.073 0.055 0.072 0.047 0.079

30 500 0.382 0.711 0.435 0.755 0.389 0.839 0.515 0.903
1000 0.146 0.552 0.191 0.614 0.146 0.644 0.144 0.644
1500 0.089 0.360 0.105 0.390 0.087 0.417 0.085 0.425
2000 0.067 0.270 0.066 0.213 0.071 0.181 0.069 0.190
2500 0.066 0.148 0.059 0.119 0.060 0.087 0.059 0.107
3000 0.057 0.127 0.056 0.099 0.053 0.074 0.061 0.089
3500 0.063 0.102 0.058 0.077 0.056 0.076 0.062 0.075
4000 0.061 0.099 0.053 0.065 0.057 0.061 0.059 0.069

Generally, the Type I error rates decreased with the test length and
the sample size. A number of irregularities were present, but it must be
taken into account that the standard errors of the percentages are between
0.02 (for a proportion of 0.05) and 0.05 (for a proportion of 0.50). The
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results show that the Type I error rates for the LM1-statistic were lower
than values for the LM2-statistic. Both statistics attained the nominal
significance level, when the number of persons increased, except for the tests
for GGUM when the numbers of items were K = 10, or 20. Note that the
Type I error rates for the LM1 statistic were reasonable and approximately
equal for GGUM, CGPCM, CGRM and QLOG when the number of persons
is above 1, 000 and test length is above 10. Type I error rate on the LM2-test
was approximately equal for CGPCM, CGRM, and QLOG and attained the
nominal significance level when number of persons was above 2, 000. The
Type I error rate for the LM2 test for the GGUM was still too high for
4, 000 persons and 30 items.

6.4.2 Power of the LM-test for differential item functioning

The second simulation study investigated the power of the LM-test for
differential item functioning. The responses of persons were generated
according to the alternative models given in equations 6.8 – 6.15. Two
types of violations were used; either the location parameter was shifted or
the shape parameters were shifted simultaneously. In each study two items
were selected as misfitting the model. This implies that the percentage of
misfitting items differed with test length. The same items were selected
under the four models. Only the first half of the respondents were given
a shift δ on the target items. For the second half of the respondents no
shift was simulated. To model the same shift under all models, δ-values
had to differ between the models. These equivalent δ-values were found in
a process of curve fitting. The effect sizes for the shifts in the parameter
values are given in Table 6.2. Number of persons was varied from 1, 000,
via 2, 000 to 4, 000.

Table 6.2
Parameter-shifts for differential item functioning for the four models
label GGUM CGPCM CGRM QLOG
shift δ αi βi τi αi βi τi αi βi1 βi2 αi βi γi
L1 - .25 - - .35 - - .35 .35 .28 - -
L2 - .50 - - .70 - - .70 .70 .56 - -
S1 -.40 - .40 -.55 - .40 -.50 .35 -.35 - -.40 .45
S2 -.75 - .75 -.95 - .75 -.95 .60 -.60 - -.75 .70

L1 = shift in location number 1, L2 = shift in location number 2, S1 = shift in shape number 1,

S2 = shift in shape number 2

In the first column of Table 6.2, labels are given for the different values
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of shifts. Results of the simulation studies are shown in Table 6.3 for
shift in location parameter and in Table 6.4 for shift in shape parameters
respectively. The tables give the effect size (column 1), the number of items
(column 2), the numbers of persons (column 3), and the power results for
the misfitting items and the Type I error rate for the other items in the
test. Results for GGUM are in column 4 and 5, for CGPCM in column
6 and 7, for CGRM in column 8 and 9, and for QLOG in column 10 and
11. The power was the proportion of times the two misfitting items were
correctly detected averaged over the two items and the 100 replications,
and the Type I error rate is the mean proportion of incorrect detections of
fitting items over all fitting items and all replications.

Table 6.3 shows that for shift in βi power increased when δ, K, and N
increased. Power results were similar over the four models. Type I error
rate increased as well when δ increased, but decreased as a result of increase
in test length, except for N = 1, 000. Type I error rate decreased when
number of persons increased, for higher test length only. However, Type I
error rates were only slightly above the nominal significance level for person
numbers above 2, 000 and test length above 10 for the shift with label L2.

The results for shift in shape parameters (Table 6.4) showed that power
of the LM-test for DIF increased when δ, K, and N increased. Type I error
rate slightly increased when δ increased, however the values were attaining
the nominal significance level only when number of items was above 10 and
number of persons above 2, 000. When the number of items increased Type
I error rate decreased. Type I error rate decreased when number of persons
increased for all models when number of items was at least 20. Only for
GGUM and QLOG the Type I error rate slightly increased for 10 items
when number of persons increased, but also here a standard error between
0.02 and 0.05 has to be taken into account. Results for QLOG were best.
This model had the highest power values and Type I error values were
reasonable. Results for CGRM were slightly lower on power, and similar
on Type I error rate, and results on GGUM and CGPCM were similar to
each other for the higher test length, but CGPCM was better for lower test
length.
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Table 6.3
Power results for differential item functioning with a shift in location

GGUM CGPCM CGRM QLOG
δ K N Power Type

I
Power Type

I
Power Type

I
Power Type

I
L1 10 1000 0.130 0.179 0.165 0.102 0.205 0.094 0.115 0.063

2000 0.205 0.137 0.200 0.065 0.285 0.062 0.250 0.054
4000 0.350 0.155 0.470 0.067 0.515 0.070 0.425 0.055

20 1000 0.255 0.106 0.215 0.096 0.260 0.086 0.235 0.079
2000 0.350 0.075 0.315 0.060 0.370 0.066 0.400 0.064
4000 0.640 0.076 0.600 0.060 0.680 0.058 0.620 0.064

30 1000 0.260 0.148 0.315 0.172 0.310 0.167 0.260 0.160
2000 0.390 0.071 0.355 0.078 0.415 0.066 0.385 0.074
4000 0.715 0.070 0.700 0.065 0.680 0.061 0.660 0.062

L2 10 1000 0.350 0.160 0.385 0.120 0.475 0.123 0.380 0.069
2000 0.660 0.183 0.765 0.090 0.800 0.082 0.755 0.071
4000 0.915 0.176 0.975 0.077 0.960 0.096 0.955 0.096

20 1000 0.615 0.113 0.580 0.107 0.615 0.073 0.685 0.095
2000 0.925 0.089 0.905 0.066 0.910 0.066 0.930 0.071
4000 1.000 0.096 1.000 0.060 1.000 0.070 1.000 0.082

30 1000 0.685 0.144 0.690 0.196 0.730 0.165 0.680 0.166
2000 0.935 0.079 0.920 0.063 0.925 0.073 0.905 0.081
4000 1.000 0.077 1.000 0.058 0.995 0.066 0.995 0.068

The labels L1 and L2 refer to the parameter shifts in Table 6.2
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Table 6.4
Power results for differential item functioning with a shift in shape

GGUM CGPCM CGRM QLOG
δ K N Power Type

I
Power Type

I
Power Type

I
Power Type

I
S1 10 1000 0.225 0.157 0.240 0.119 0.230 0.093 0.475 0.065

2000 0.400 0.133 0.420 0.069 0.445 0.086 0.785 0.064
4000 0.650 0.144 0.775 0.053 0.710 0.067 0.980 0.070

20 1000 0.245 0.081 0.290 0.092 0.375 0.079 0.515 0.084
2000 0.460 0.059 0.505 0.069 0.650 0.053 0.830 0.069
4000 0.780 0.065 0.815 0.053 0.950 0.056 0.980 0.056

30 1000 0.335 0.142 0.370 0.199 0.390 0.177 0.755 0.188
2000 0.505 0.067 0.615 0.072 0.545 0.076 0.940 0.074
4000 0.830 0.061 0.905 0.052 0.875 0.064 1.000 0.068

S2 10 1000 0.645 0.199 0.765 0.097 0.550 0.085 0.930 0.078
2000 0.920 0.168 0.960 0.083 0.935 0.068 1.000 0.081
4000 1.000 0.176 1.000 0.081 1.000 0.092 1.000 0.100

20 1000 0.825 0.099 0.835 0.108 0.940 0.091 0.960 0.093
2000 0.965 0.067 0.985 0.077 1.000 0.078 1.000 0.071
4000 1.000 0.064 1.000 0.057 1.000 0.054 1.000 0.067

30 1000 0.855 0.168 0.860 0.190 0.855 0.178 0.990 0.221
2000 0.980 0.098 0.975 0.084 0.995 0.073 1.000 0.082
4000 1.000 0.057 1.000 0.054 1.000 0.070 1.000 0.073

The labels S1 and S2 refer to the parameter shifts in Table 6.2

6.4.3 Power of LM-test for shape of item characteristic
curve

In the third simulation study the sensitivity of the LM-test for shape of
the item characteristic curve was investigated. The LM-test was computed
with the model given by equations 6.16 – 6.18 as alternative for GGUM and
the analogous alternative models for the other three models. The boundary
values ms were chosen in such a way that the sample of respondents was
partitioned into three equal subsamples. However, for the generation of
data under the alternative model, it was not considered realistic to base the
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partitioning of the sample on observed scores. Therefore, the partitioning
was based on the standard normal distribution of latent person parameters,
again in such a way that the sample of respondents was partitioned into
three equal subsamples. The shifts of the item parameters were either in
the discrimination parameter or both shape parameters. The values are
given in Table 6.5. Shifts were zero for the lowest scoring group, δ for the
middle group and 2δ for the highest scoring group. In each study, two items
were selected as misfitting under the models. Test length and number of
persons were varied.

Column 1 of Table 6.5 gives labels for the different shifts in δ. Results
of the power studies for shift in discrimination parameter are given in
Table 6.6. The table has the same setup as the tables for the LM-test for
differential item functioning. Both power and Type I error rate increased
when δ increased. The table shows that for a test length of 10 items
both power and Type I error rate were approximately equal, and relatively
high. Similar values in power and Type I error rate were also found for
N = 1, 000. For the combinations of 20 and 30 items, and 2, 000 and
4, 000 persons, and the effect size labeled D1, the power increased when
test length increased. Power increased when number of persons increased.
Also, for the combinations of 20 and 30 items, and 2, 000 and 4, 000 persons,
the Type I error rate decreased when number of persons increased. Type
I error rates only attained the nominal significance level for 30 items and
4, 000 persons. For the effect size labeled D2,the results were generally
analogous.

Table 6.5
Parameter-shifts for shape of response function for the four models
Lable GGUM CGPCM CGRM QLOG
shift δ αi βi τi αi βi τi αi βi1 βi2 αi βi γi
D1 .50 - - .50 - - .50 - - - - -.50
D2 .75 - - .95 - - .95 - - - - -.70
S1 -.25 - .25 -.35 - .25 -.30 .20 -.20 - -.25 .25
S2 -.40 - .40 -.55 - .40 -.50 .35 -.35 - -.40 .45

D1 = shift in discrimination number 1, D2 = shift in discrimination number 2, S1 = shift in shape

number 1, S2 = shift in shape number 2
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Table 6.6
Power results for shape of item characteristic curve with shift in discrimination

GGUM CGPCM CGRM QLOG
δ K N Power Type

I
Power Type

I
Power Type

I
Power Type

I
D1 10 1000 0.433 0.374 0.153 0.187 0.135 0.112 0.060 0.099

2000 0.551 0.428 0.140 0.073 0.120 0.065 0.115 0.054
4000 0.486 0.484 0.067 0.078 0.047 0.074 0.065 0.088

20 1000 0.429 0.283 0.298 0.222 0.305 0.203 0.255 0.209
2000 0.480 0.188 0.225 0.109 0.240 0.095 0.170 0.103
4000 0.760 0.134 0.390 0.071 0.415 0.075 0.325 0.088

30 1000 0.633 0.551 0.596 0.565 0.670 0.634 0.650 0.604
2000 0.430 0.236 0.330 0.220 0.255 0.142 0.290 0.179
4000 0.665 0.091 0.390 0.061 0.435 0.077 0.435 0.061

D2 10 1000 0.580 0.490 0.384 0.392 0.310 0.280 0.105 0.095
2000 0.648 0.563 0.392 0.340 0.345 0.176 0.120 0.070
4000 0.663 0.646 0.288 0.305 0.128 0.170 0.035 0.120

20 1000 0.551 0.251 0.442 0.246 0.495 0.244 0.330 0.196
2000 0.695 0.194 0.665 0.304 0.515 0.118 0.270 0.097
4000 0.965 0.172 0.825 0.288 0.885 0.092 0.630 0.085

30 1000 0.753 0.618 0.702 0.596 0.780 0.638 0.730 0.598
2000 0.655 0.222 0.555 0.178 0.705 0.152 0.445 0.163
4000 0.910 0.092 0.820 0.074 0.915 0.066 0.595 0.070

The labels D1 and D2 refer to the parameter shifts in Table 6.5

Power and Type I error rate were higher for GGUM than for the other
models for the effect size labeled D1, while results for the other models were
similar. However results on GGUM, CGPCM and CGRM were similar for
the effect size labeled D2, while results on QLOG were lower.

The results for shift in both shape parameters as shown in Table 6.7
were generally similar to the results in only shift in discrimination. For
studies with a test length of 10 items or a number of persons of 1, 000, the
Type I error rate and power were approximately equal. A small difference
was seen with the former study in that for a combination of 10 items
and 4, 000 persons the discrepancy between power and Type I error rate
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increased for GGUM, CGPCM and CGRM, while for QLOG the difference
was also valuable for 1, 000 and 2, 000 persons. For K = 20 and K = 30
the power increased when the test length increased, when the number of
persons increased, and when δ increased under all models. The power of
the LM2-test was reasonable and Type I error rate attained the nominal
significance level for a test length of 20 items and 4, 000 persons when a big
shift was made, whereas this was the case at 30 items and 4, 000 persons
when a small shift was made. Results for GGUM, CGPCM and CGRM
were similar, while results for QLOG were slightly better for a shorter test
length, but worse for a longer test.

Table 6.7
Power results for shape of item characteristic curve for shift in shape

GGUM CGPCM CGRM QLOG
δ K N Power Type

I
Power Type

I
Power Type

I
Power Type

I
S1 10 1000 0.342 0.431 0.250 0.306 0.175 0.186 0.160 0.121

2000 0.265 0.316 0.185 0.188 0.110 0.120 0.245 0.099
4000 0.240 0.178 0.183 0.093 0.235 0.059 0.325 0.070

20 1000 0.308 0.326 0.308 0.328 0.225 0.250 0.275 0.221
2000 0.175 0.184 0.215 0.133 0.145 0.105 0.270 0.104
4000 0.255 0.167 0.280 0.079 0.225 0.076 0.485 0.098

30 1000 0.585 0.555 0.595 0.581 0.665 0.658 0.805 0.676
2000 0.360 0.273 0.437 0.273 0.365 0.199 0.555 0.211
4000 0.365 0.101 0.570 0.083 0.450 0.073 0.750 0.065

S2 10 1000 0.390 0.430 0.347 0.394 0.245 0.241 0.360 0.164
2000 0.349 0.367 0.298 0.250 0.270 0.131 0.655 0.096
4000 0.445 0.257 0.374 0.165 0.475 0.098 0.910 0.130

20 1000 0.332 0.297 0.394 0.337 0.325 0.234 0.580 0.256
2000 0.325 0.187 0.420 0.110 0.360 0.097 0.810 0.099
4000 0.475 0.104 0.660 0.108 0.690 0.080 0.940 0.098

30 1000 0.709 0.552 0.682 0.559 0.835 0.691 1.000 0.923
2000 0.595 0.296 0.672 0.290 0.670 0.194 1.000 0.705
4000 0.835 0.090 0.930 0.083 0.945 0.069 1.000 0.464

The labels S1 and S2 refer to the parameter shifts in Table 6.5
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6.5 A real data example

The simulation results on the LM-test for shape of the item characteristic
curve showed that this test only had a reasonable Type I error rate for more
than 20 items and more than 2, 000 persons. Because the model violations
generated above might be artificial, the present study investigated the
characteristics of the tests on a real data set. Data of 223 persons on
a 20-item inventory measuring Censorship (Roberts, 1995) were used for
this study. Item and person parameters were estimated using the original
GGUM program (Roberts, Donoghue, & Laughlin, 2000). The responses
and estimated person parameters were used as input to estimate the item
parameters back for GGUM and to estimate the item parameters for the
CGPCM, CGRM and QLOG.

One of the problems with real data is that with large sample sizes, all
tests become significant. On the other hand the asymptotic distribution is
often not attained with low sample sizes. The present study investigates
these opposite effects in real data. First, five mixtures of the real data
and simulated data were generated for 223 persons for each model. The
first dataset contained 100% simulated data based on the item parameters
estimated on the real data and person parameters drawn from a standard
normal distribution. The next four datasets were formed by replacing parts
of the dataset by real data in steps of 25%. So the second dataset contained
75% simulated data and 25% real data, the third dataset 50% simulated
data and 50% real data, the fourth dataset 25% simulated data and 75%
real data, and the fifth dataset contained the real data only. Next, the
datasets were multiplied four and eight times, to obtain data sets of 892
and 1, 784 persons, respectively. For each dataset item parameters were
estimated under the four models and LM-statistics were computed.

In Table 6.8 the results of the study are given. The table shows the
percentage of significant LM-tests for the 20-item tests. The quality
of the test can be assessed by comparing the relationship between the
percentage of significant item tests for completely simulated and completely
real data. Note that the test attains the nominal significance level with
100% simulated data for N = 1, 784, while the power is around 0.90. For
N = 892 the results are only slightly less favorable. Note that for N = 223,
for the CGPCM and CGRM, the Type I error rate increases to around 0.15
while the power markedly decreases. For the combination of GGUM and
N = 223 the test completely fails: both the power and Type I error rate
were around 0.60. The results for QLOG were somewhere in between.
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Table 6.8
Percentages of significant item tests for various mixtures of a real data set with simulated
data

Percentage Percentage significant
Model simulated N = 223 N = 892 N = 1784
GGUM 100 61 11 5

75 66 16 19
50 62 47 65
25 59 59 84
0 62 75 89

CGPCM 100 15 9 8
75 18 13 20
50 53 44 60
25 63 59 81
0 30 88 92

CGRM 100 15 11 5
75 40 30 25
50 62 70 65
25 75 85 90
0 70 100 100

QLOG 100 33 5 9
75 70 21 15
50 80 70 55
25 80 80 90
0 55 85 95

For mixtures of real and simulated data, the effects of too low a sample
size for an asymptotic distribution and a high power with a large sample
size were found; for instance, for 50% simulated data in combination with
GGUM, percentage significant decreased from 62 (N = 223) to 47 (N =
892) and then increased to 65 (N = 1, 784). Analyses such as these can
help to gain insight in the effect of sample size on the outcomes of the tests
with a real data set and for the appraisal of the outcome of a test.
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6.6 Discussion

Two Lagrange Multiplier statistics were developed to detect item misfit
due to differential item functioning (LM1) and misfit of the shape of the
item characteristic curve (LM2). When no misfitting items were present,
the tests attained the nominal significance level when number of persons
was at least 1, 500 and number of items was at least 20. The results of
the simulation studies of the power showed that the LM-test for differential
item functioning gave better results than the LM-test for shape of the
item characteristic curve. Results on the LM-test for differential item
functioning showed that this statistic gave reasonable results for all models
when number of items was at least 20 and number of persons was at
least 2, 000. Power increased with increasing shift in δ, increasing person
numbers N , and increasing test lengths K. Type I error rate increased
with increasing δ, and decreased with increasing K and N . Although no
differences between models were found for shift in the location parameter,
for shifts in shape the QLOG model seemed to work slightly better, followed
by the CGRM, the CGPCM and the GGUM model.

The power study on the LM-test for the shape of the item characteristic
curve showed reasonably high power values; in general, power increased
with increasing values of δ, K, and N . However, the Type I error rate was
as high as the power for a sample size of 1, 000. It attained values below 0.10
only for the combination of 30 items and 4, 000 persons for the CGPCM,
CGRM, and QLOG. , However, when shape parameters were varied, the
test gave poor results for the QLOG model, in the sense that the power
and Type I error rate were of the same magnitude.

Because the model violations imposed might be somewhat artificial, a
study with real data was conducted. The data set did not fit any of the
four models. The research question was whether this was due to a large
sample size resulting in high power or a low sample size resulting in a poor
approximation of the asymptotic distribution. This study found a Type I
error rate attaining the nominal significance level for 100% simulated data
for a sample size of N = 1, 784, which rose to 0.10 for N = 892, and to 0.15
for N = 223. For GGUM the test completely fails for N = 223.

Overall, the results show that large numbers of persons (more than
2, 000) and large numbers of items (more than 20) are needed to test the
models. The test for differential item functioning performed better than
the test for shape of the ICC.

To improve results, it might be possible to extend the LM-statistics to
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forms that take into account additional information of other items which
show similar wording or external variables as was done for person fit in Glas
and Dagohoy (2007). A second extension of this research might be to use
LM-tests to detect other forms of item misfit, such as local dependence
or multidimensionality. Furthermore, a comparison study between the
LM-statistics and other item fit statistics is needed. A fourth extension
to this study might be to investigate power and Type I error rates of
these item fit statistics for person parameters drawn from a different
distribution than the standard normal distribution. In typical performance
measurement person scores may not follow a standard normal distribution.
The difference of person score distributions on item parameter estimation
has been investigated by Roberts, Donoghue, and Laughlin (2002), who
found only minor differences between different population distributions for
GGUM.

The last remark pertains to the estimation of the models. In the
process of searching for realistic item parameter values, we found that
MML estimation of the parameters is not always unproblematic. The
item parameters are highly correlated and therefore often poorly identified.
An often used solution is found in a Bayesian framework where priors
for the item parameters can be defined to limit their absolute values.
Glas (1999) shows that LM tests for IRT models can be straightforwardly
generalized to a Bayes modal framework (the term “modal” refers to
the mode of the posterior distribution). Another possibility is using a
fully Bayesian framework in combination with Markov chain Monte Carlo
(MCMC) computational methods such as applied to IRT by Albert (1992)
and Patz and Junker (1999a, 1999b). Also in this respect more research
needs to be done.

Appendix

Define the loglikelihood of an item response as

L(xni, θn) = xni logP (xni = 1 | θn)+(1−xni) log(P (xni = 0 | θn)). (6.20)

Then the log-likelihood for a response pattern given θn is

L(η, θn | xn) =
K∑
i=1
L(xni, θn). (6.21)

We apply Fisher’s identity (Efron, 1977; Louis, 1982) to find the first-order
derivatives easily. Fisher’s identity is based on a complete data design, with
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the complete data consisting of both observed variables xn and unobserved
variables θn. Let

ωn(ηij) = ∂

∂ηij
L(xni, θn),

for some item parameter ij. Fisher’s identity entails that the first-order
derivative of the log of the likelihood given by (6.5) is given by

∂

∂ηij
logL(η) =

N∑
n=1

E(ωn(ηij) | xn, ηi)

=
N∑
n=1

ˆ
ωn(ηij)P (θn | xn)dθn,

in which P (θn | xn) is the posterior density of θ given the response pattern.
The posterior density is equal to P (x | θ)g(θ)/p(xn).

The first derivative of the loglikelihood with respect to the item
parameters is used in the calculations and is given by

ωn(ηij) = P
′
i (xni − Pi)
Pi(1− Pi)

(6.22)

in which Pi =P (xni = 1 | θn) is one of the alternative models for GGUM,
CGPCM, CGRM or QLOG.

Let the first derivatives of the log-likelihood with respect to the item
parameters be defined as follows

ωn(αi) = ∂logL

∂αi
(6.23)

ωn(βi) = ∂L

∂βi
(6.24)

ωn(τi) = ∂L

∂τi
(6.25)

ωn(γi) = ∂L

∂γi
. (6.26)

For DIF, the first derivative of the log-likelihood with respect to parameters
δ under the models for the differential item functioning test are then given
in Table 6.9. The explanation of the table is as follows. Consider the
GGUM model. The parameter δ1 is a shift of the parameter βi and from
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Table 6.9
First derivatives of the log-likelihood for δ

GGUM CGPCM CGRM QLOG
ωn(δ1) ynωn(βi) ynωn(βi) ynωn(βi1) ynωn(αi)
ωn(δ2) ynωn(αi) ynωn(αi) ynωn(αi) ynωn(γi)
ωn(δ3) ynωn(τi) ynωn(τi) ynωn(βi2) ynωn(βi)
Interpretation: ωn(δ1) = ynωn(βi), etc.

Equation (6.8) it can be seen that δ1 has the same position as βi, except
that it is multiplied by yn. Therefore, ωn(δ1) = ynωn(β). The other entries
in the table are explained analogously.

For the shape of the ICC, the first derivative of the log-likelihood with
respect to parameters δ are analogous if we replace yn by yns, for s = 2, ..., S.
For the four models the ωn differ. The first derivatives with respect to the
item parameters for all four models are given below.

Derivatives for the Generalized Graded Unfolding Model

Using Equation (6.1) it can be easily verified that the first derivative of
the loglikelihood with respect to the item parameters are

ωn(αi) = θ[f − 2fh+ 2g − gh][xi − Pi]
(f + g)(1 + h) ,

ωn(βi) = [−f + 2fh− 2g + gh][x− Pi]
(f + g)(1 + h) ,

ωn(τi) = −[xi − Pi].

Derivatives for the Collapsed Generalized Partial Credit
Model

Using Equations (6.2) it can be easily verified that the first derivative
of the loglikelihood with respect to the item parameters are

ωn(αi) = θ(k − kl)[xi − Pi]
k(1 + l) ,

ωn(βi) = k(l − 1)[xi − Pi]
k(1 + l) ,

ωn(τi) = −[xi − Pi].
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Derivatives for the Collapsed Graded Response Model

Using Equations (6.3) it can be easily verified that the first derivative
of the loglikelihood with respect to the item parameters are

ωn(αi) = [θπi1 (1− πi1)− θπi2 (1− πi2)] [xi − (πi1 − πi2)]
(πi1 − πi2) (1− πi1 + πi2)

ωn(βi1) = [−πi1 (1− πi1)] [xi − (πi1 − πi2)]
(πi1 − πi2) (1− πi1 + πi2)

ωn(βi2) = [πi2 (1− πi2)] [xi − (πi1 − πi2)]
(πi1 − πi2) (1− πi1 + πi2) .

Derivatives for the Quadratic Logistic Regression Model

Using Equations (6.4) it can be easily verified that the first derivative
of the loglikelihood with respect to the item parameters are

ωn(αi) = θ (xi − Pi)
ωn(βi) = (xi − Pi)
ωn(γi) = θ2 (xi − Pi) .
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Conclusions

In the educational, employment, and clinical context, attitude and
personality inventories are used to measure typical performance traits and
to predict outcomes. Statistical models are applied to obtain latent trait
estimates. The models are often the same statistical models as the models
used in maximum performance measurement. However, different models
than the ones used in maximum performance measurement might be better
applicable to describe typical performance measures. This thesis deals with
the modeling of two systematic features in the typical performance domain:
the factor structure of typical performance measures and response processes
to typical performance measures.

The first part of this thesis discussed the multitude of related factors and
facets. In Chapters 2 and 3 complex multidimensional models were used
to describe the factor structure of both a personality inventory (Chapter
2) and an attitude inventory (Chapter 3). The dimensionality structure
of measurement instruments is often explored using non-hierarchical
multidimensional models or second-order models. However, the use of the
more advanced bifactor model is increasing (Chen, West, & Sousa, 2006;
Reise, Morizot, & Hays, 2007). In Chapters 2 and 3, the applicability of
this model was investigated and compared to the applicability of the non-
hierarchical multidimensional model and second-order model in Chapter
2, and to the non-hierarchical multidimensional model in Chapter 3. The
non-hierarchical multidimensional model describes the item responses by
domain-specific factors only, whereas second-order and bifactor models
assume a general factor and both a general factor and domain-specific
factors, respectively. The dichotomously scored personality inventory for
adolescents in Chapter 2 could be described best by the bifactor model,
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consisting of a general factor and three domain-specific factors. Results on
the second-order model and the non-hierarchical multidimensional model
supported these findings. Some items were found to be multidimensional,
measuring both general and domain-specific factors, whereas other items
did measure one of the factors only. Furthermore, it was found that
sum scores and factor scores under different models resulted in a different
ordering of persons on the traits, especially in the higher ranges of the trait
continuum. The third chapter discussed the dimensionality structure of a
polytomously scored attitude inventory, which was best described by the
non-hierarchical multidimensional model. However, the bifactor analysis
largely corroborated the non-hierarchical multidimensional model results.
The general factor mainly consisted of items of one scale, and thus was
representative of a strong domain-specific factor.

The second part of this thesis dealt with response processes to typical
performance measures. Chapter 4 discussed the applicability of different
response models. Recently it was suggested that typical performance
measures might be better described by ideal point response processes and
unfolding models with single-peaked item characteristic curves (ICCs),
than by dominance response processes with monotone increasing and
decreasing ICCs. In Chapter 4, it was investigated whether dominance
or unfolding IRT models are best suited to describe the response processes
to two personality inventories. These inventories were constructed using
dominance response processes or ideal-point response processes. Both
parametric dominance and unfolding IRT models and non-parametric
dominance and unfolding IRT models were used to investigate the
response processes. Results on all four models showed that inventories
constructed using dominance response processes mainly consisted of items
with monotone increasing and decreasing ICCs. However, some ICCs were
single-peaked or showed a trend to single-peakedness at the higher or lower
end of the trait continuum. The personality scale constructed based on
ideal-point response processes consisted of items with monotone increasing,
decreasing, and single-peaked ICCs. When the inventory was constructed
making use of ideal-point response processes, estimated trait scores of the
parametric dominance IRT model and parametric unfolding IRT model did
not order persons on traits similarly, especially on the upper extreme of the
trait continuum.

The results in Chapter 4 showed that there is evidence for the
applicability of unfolding IRT models in the typical performance domain.
In the literature only a small number of models for single-peaked
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response processes are applied. In Chapters 5 and 6, an already existing
unfolding IRT model, the generalized graded unfolding model (GGUM)
and three newly developed alternatives, the collapsed generalized partial
credit model (CGPCM), the collapsed graded response model (CGRM)
and the quadratic logistic regression model (QLOG), were compared by
investigating the statistical fit of the models. In Chapter 5, two person fit
statistics are discussed and in Chapter 6 two item fit statistics are discussed.
The fit statistics are developed based on the Lagrange Multiplier (LM) test.

The two person fit statistics measured constancy of theta during the
test and tendency to agree. Type I error rate and power of both tests
were investigated using simulation studies that were based on real data set
parameters under one model, while person parameters were re-estimated
and LM-statistics evaluated under all four models. The LM-statistics were
good measures to investigate invalid person response processes based on
inconsistent test responding and tendency to agree. The Type I error rate
on both tests was reasonable, and power increased when test length and
effect size increased. Results for all four models were similar, and there was
evidence that the models are comparable.

The two item fit statistics in Chapter 6 investigated differential item
functioning (DIF) and shape of the ICC. In simulation studies and in an
empirical example, Type I error rate and power of the tests were evaluated
for the four models separately. Type I error rate and power characteristics
were better for the test for DIF than for the test for shape of the ICC.
Type I error rate only attained nominal level when number of persons
increased. Power on both tests was reasonable for large numbers of items,
large numbers of persons and increasing effect size. Type I error rate on the
test for DIF was only slightly above the nominal significance level and power
was reasonable for at least 20 items and at least 2000 persons, whereas Type
I error rate on the test for the shape of the ICC was reasonable for at least
30 items and 4000 persons. On the test for DIF, QLOG worked better
than CGPCM and CGRM, which showed better results than GGUM. The
CGPCM and CGRM models gave better results on the test for shape of the
ICC. Furthermore, a real data example was used to investigate whether the
results found in the simulation studies on the power of the test for shape of
the ICC were artificial. Mixtures of both real data and simulated data were
used to investigate power and the influences of sample size. Results showed
that LM-tests do not reach the asymptotic distribution when sample size
is too low, and become significant when sample size is too large. CGRM
and CGPCM showed the best results.
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In general, in this thesis it is shown that it is important to not simply
apply models that are used in maximum performance measurement to
typical performance measurement. It is important to investigate the
validity of typical performance measures using models that take general and
specific factors into account, and to investigate whether responses to typical
performance measures follow an ideal-point response process. Regarding to
the validity of typical performance measures, the bifactor model fitted the
attitude measure slightly worse than the non-hierarchical model. However
the bifactor model gave clear results on the dimensionality structure of
instruments, dimensionality of items, interpretation of the factors, and
scoring of individuals for both attitude and personality inventories. The
bifactor model is more general, and gives a statistically based conclusion
about the appropriateness of the non-hierarchical multidimensional model
and the second-order model, even in case of two or three domain-specific
factors. Furthermore, the bifactor model gave additional information
compared to the other models, which makes it a valuable model to use for
constructing and analyzing typical performance measures. Regarding the
response processes, ideal-point response processes can be used to broaden
the spectrum of measurement and the variety in items. Both monotone
increasing (positively worded items), monotone decreasing (negatively
worded items) and single-peaked items (neutrally worded items) can be
written, and these items may add to the measurement precision in an area
where dominance items are difficult to formulate. Four IRT models were
introduced to model these types of responses, and two LM-tests to detect
person fit and two tests to detect item fit were developed. These are first
contributions to person, item and model fit for the unfolding models and
thus further research is needed, but unfolding models have potential for
measurement in the typical performance domain.
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Samenvatting

Attitude- en persoonlijkheidsvragenlijsten worden in de onderwijs-
beroeps- en klinische context vaak gebruikt om kenmerkend gedrag
(”typical performance”) te meten en externe variabelen (uitkomsten) te
voorspellen. Door gebruik te maken van statistische modellen is het
mogelijk om schattingen te maken van de trek die wordt gemeten en om de
structuur van de gemeten gedragingen in kaart te brengen. De gebruikte
modellen zijn vooral veel toegepast bij onderwijskundige toetsen en andere
prestatietoetsen (”maximum performance”). Omdat persoonlijkheids- en
attitudevragenlijsten kwalitatief verschillen van onderwijskundige toetsen
is het niet vanzelfsprekend psychometrische modellen die worden toegepast
bij onderwijskundige metingen toe te passen bij persoonlijkheids- en
attitudemetingen. In dit proefschrift wordt aan het modelleren van
twee systematische kenmerken van vragenlijsten voor kenmerkend gedrag
aandacht besteed. Ten eerste is de complexiteit van de factorstructuur van
de vragenlijsten vaak complexer dan bij prestatietoetsen. Ten tweede zijn
er mogelijke verschillen tussen de responsprocessen bij prestatietoetsen en
vragenlijsten.

Na een algemene inleiding (hoofdstuk 1) wordt in het eerste deel van
dit proefschrift aandacht besteed aan het modelleren van de structuur
van persoonlijkheids- en attitudevragenlijsten. Het tweede deel van dit
proefschrift besteed aandacht aan het modelleren van responsprocessen op
vragenlijsten.

In de twee hoofdstukken (hoofdstuk 2 en 3) in het eerste deel van het
proefschrift worden complexe multidimensionele modellen gebruikt om de
factorstructuur van een dichotoom gescoorde persoonlijkheidsvragenlijst
(hoofdstuk 2) en een polytoom gescoorde attitudevragenlijst (hoofdstuk 3)
te beschrijven. Hoewel de dimensionaliteitsstructuur van meetinstrumenten
vaak wordt onderzocht met behulp van niet-hierarchische multidimensionele
modellen of tweede-orde modellen, neemt het gebruik van bifactor
modellen toe. Het niet-hierarchische model beschrijft de items als
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metingen van domein-specifieke factoren, terwijl het tweede-orde model
en bifactor model de items beschrijven als metingen van respectievelijk
een algemene factor en zowel algemene als domein-specifieke factoren.
De structuur van de persoonlijkheidsvragenlijst wordt onderzocht door
gebruik te maken van alle drie de modellen, terwijl de structuur van
de attitudevragenlijst alleen wordt onderzocht voor het niet-hierarchisch
multidimensionele model en het bifactor model. De resultaten tonen
dat de persoonlijkheidsvragenlijst het best wordt beschreven door het
bifactor model, terwijl de attitudevragenlijst het best wordt beschreven
door het niet-hierarchisch multidimensioneel model. De resultaten voor
de onderzochte modellen laten elkaar ondersteunende en bevestigende
resultaten zien. Het bifactor model geeft in beide onderzoeken
aanvullende suggesties over de algemeenheid van de constructen en
de multidimensionaliteit van de items binnen de gemeten constructen.
Daarnaast wordt geconstateerd dat het scoren van personen onder de
verschillende modellen leidt tot verschillende ordeningen van personen op
trekken, vooral in de hogere regionen van het latente trek continuum.

Het tweede deel, startend met hoofdstuk 4, onderzoekt de
toepasbaarheid van ontvouwingsmodellen binnen het kenmerkend gedrag
domein (hoofdstuk 4), alsmede statistische procedures om de passing
van deze ontvouwingsmodellen te onderzoeken (hoofdstuk 5 en 6).
Recentelijk is gesuggereerd dat binnen het persoonlijkheidsdomein
responsprocessen op vragenlijsten wellicht beter worden beschreven door
ontvouwingsmodellen met belvormige itemkarakteristieke curves dan door
de gangbare dominantiemodellen. Ondanks dat ontvouwingsmodellen
wel worden gebruikt bij attitudemetingen, worden deze heden ten dage
nauwelijks gebruikt om persoonlijkheidsvragenlijsten te construeren en
te analyseren. Om meer inzicht te krijgen in de structuur van
persoonlijkheidsdata, wordt in hoofdstuk 4 onderzocht of ontvouwings-
IRT-modellen (ontvouwings-itemresponsetheorie-modellen) een alternatief
kunnen vormen voor dominantie-IRT-modellen. Zowel vragenlijsten
die zijn geconstrueerd op basis van dominantieresponsprocessen als
ontvouwingsresponsprocessen worden geanalyseerd. Zowel parametrische
als niet-parametrische IRT-modellen worden gebruikt voor de analyses.
De resultaten laten zien dat vragenlijsten die geconstrueerd zijn door
gebruik te maken van dominantieresponsprocessen hoofdzakelijk bestaan
uit items met monotoon stijgende itemkarakteristieke curven. Sommige
itemkarakteristieke curves zijn echter belvormig of tonen een trend
naar belvormige curves aan het hogere of lagere extreem van het
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trek continuum. De persoonlijkheidsvragenlijst die geconstrueerd is
met behulp van ontvouwingsresponsprocessen bestaat inderdaad uit
items met zowel monotoon stijgende, monotoon dalende als belvormige
itemkarakteristieke curves. Voor de vragenlijst geconstrueerd op basis
van ontvouwingsresponsprocessen zijn de geschatte trekscores van het
parametrische dominantie-IRT-model en het parametrische ontvouwings-
IRT-model niet in dezelfde volgorde geordend.

De resultaten van hoofdstuk 4 tonen enige evidentie voor de
toepasbaarheid van ontvouwings-IRT-modellen binnen het kenmerkend
gedrag domein. Het gebruik van ontvouwings-IRT-modellen in het
persoonlijkheids- en attitude domein is relatief schaars, en in tegenstelling
tot dominantie-IRT-modellen worden slechts enkele modellen voor
ontvouwingsresponsprocessen gebruikt. In de hoofdstukken 5 en 6 worden
een bestaand ontvouwings-IRT-model, het ”generalized graded unfolding
model” (GGUM) en drie nieuw ontworpen alternatieven, het ”collapsed
generalized partial credit model” (CGPCM), het ”collapsed graded response
model” (CGRM) en het ”quadratic logistic regression model”(QLOG)
vergeleken door de statistische passing van de modellen te onderzoeken.
In hoofdstuk 5 worden passingsmaten voor personen onderzocht en in
hoofdstuk 6 passingsmaten voor items. In beide hoofdstukken worden
passingstoetsen ontworpen die gebaseerd zijn op de Lagrange Multiplier
(LM) toets.

In hoofdstuk 5 worden twee "personfit" toetsen ontwikkeld: een toets
om te onderzoeken of de waarde van de latente trek gedurende de test niet
veranderd, en een toets om de tendens tot instemming te onderzoeken.
Simulatiestudies gebaseerd op de karakteristieken van echte data worden
uitgevoerd om de Type I fout en het onderscheidend vermogen van de
toetsen te onderzoeken. Data worden gegenereerd onder één model en
vervolgens worden de persoonsparameters teruggeschat en de LM-toetsen
geëvalueerd voor de vier modellen. Type I fouten van beide LM-toetsen zijn
acceptabel voor alle modellen. Het onderscheidend vermogen van de LM-
toetsen neemt toe wanneer de testlengte en effectgrootte toeneemt. Tussen
de vier modellen worden slechts kleine verschillen gevonden. Beide LM-
toetsen blijken geschikt om invalide respons processen van personen door
respectievelijk inconsistentie van de latente trek en tendens tot instemming
te onderzoeken.

In hoofdstuk 6 worden de assumpties van eendimensionaliteit en
vorm van de itemkarakteristieke curve van ontvouwings-IRT-modellen
onderzocht. Twee LM-toetsen worden ontwikkeld, een passingstoets om
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”differential item functioning” (DIF) te onderzoeken, en een passingstoets
om de vorm van de itemkarakteristieke curve te onderzoeken. Beide
toetsen worden apart geëvalueerd voor de vier modellen. In simulatiestudies
worden de Type I fout en het onderscheidend vermogen van de toetsen
onderzocht. De test voor DIF presteert beter dan de test voor vorm
van de itemkarakteristieke curve. De Type I fout van beide toetsen
is boven nominaal niveau, maar benadert het nominale niveau als het
aantal personen toeneemt. Resultaten voor de studie naar onderscheidend
vermogen van beide toetsen laten zien dat een groot aantal items en een
groot aantal personen nodig zijn om acceptabele resultaten te verkrijgen.
Ondanks dat het onderscheidend vermogen van de LM-toets voor DIF
toeneemt als de test lengte, het aantal personen en de effectgrootte
toenemen, en de Type I fout net boven nominaal niveau blijft steken,
worden pas acceptabele resultaten gevonden voor ten minste 20 items
en ten minste 2000 personen. Voor de LM-toets naar vorm van de
itemkarakteristieke curve worden acceptabele waarden enkel gevonden voor
ten minste 30 items en ten minste 4000 personen. Voor de DIF-toets
presteert QLOG iets beter dan de andere drie modellen, terwijl GGUM
slechter presteert dan de overige modellen. De modellen CGPCM en
CGRM geven betere resultaten dan de andere twee modellen voor de toets
naar de vorm van de itemkarakteristieke curve. Empirische data worden
geanalyseerd om te onderzoeken of de resultaten, die worden gevonden in
de simulatiestudie naar het onderscheidend vermogen van de toets voor de
vorm van de itemkarakteristieke curve, gemaakt zijn. Gemixte designs van
echte en gesimuleerde data tonen dat de toets significante resultaten geeft
als de populatiegrootte te groot wordt en dat de LM-toets de asymptotische
verdeling niet bereikt als de populatiegrootte te klein is. Resultaten zijn
het meest hoopvol voor CGPCM en CGRM.

In het algemeen worden in dit proefschrift twee onderwerpen
besproken; de veelheid aan gerelateerde factoren en het modelleren van
responsprocessen. De twee hoofdstukken over de dimensionaliteitsstructuur
van metingen laten zien dat het belangrijk is de validiteit van vragenlijsten
te onderzoeken door gebruik te maken van modellen die zowel algemene
als specifieke factoren in ogenschouw nemen. Het tweede deel van het
proefschrift laat zien dat het belangrijk is ontvouwingsresponsprocessen
in ogenschouw te nemen, omdat deze het meetspectrum kunnen verbreden,
alsmede de variëteit in persoonlijkheids- en attitudeitems en de meetprecisie
van vragenlijsten. Vier modellen met bijbehorende passingsmaten worden
besproken.
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Dankwoord

Dit is het dan, mijn proefschrift, het resultaat van vier jaar werk. Ik mag
het dan wel mijn proefschrift noemen, maar ik had dit boekje niet kunnen
schrijven zonder de hulp, medewerking en steun van velen. Promoveren
gaat niet altijd over rozen, maar desondanks is het een mooi proces waarin je
leert, groeit en je eigen persoonlijkheid en attitude goed leert kennen. Nee,
het schrijven van een proefschrift is geen simpel monotoon stijgend proces
met alleen maar mooie ontwikkelingen. Het is meer te omschrijven als een
multi-peaked monotoon stijgend proces. Naast de groei, die welliswaar door
blijft gaan zijn er ook kleine tegenslagen en gaat het niet altijd helemaal
zoals je graag zou willen. Maar juist deze tegenslagen heb je nodig om
verder te kunnen, immers alleen door fouten te maken doe je ervaring op
en leer je. Op deze momenten heb je de hulp, medewerking en steun van
anderen het hardst nodig. Natuurlijk kan ik niet iedereen hier persoonlijk
bedanken, maar enkelen wil ik toch graag noemen.

In het bijzonder bedank ik mijn promotoren en assistent-promotor. Rob,
de eerste schreden van mijn promotietraject zette ik onder jouw begeleiding.
Je kennis over de psychologie, het meten van psychologische constructen,
en de mogelijkheden voor het toepassen van de psychometrie binnen de
psychologie hebben mij zeer geholpen. Altijd was je enthousiast, altijd
stond de deur open en was je bereid bevindingen te bespreken, iets uit te
leggen of een discussie te voeren. Ik heb hier ontzettend veel van geleerd.
Zelfs toen je verhuisde naar Groningen bleef je je met mijn project bezig
houden en stond je klaar indien nodig. Mijn dank hiervoor, en natuurlijk
ook voor alle leuke gesprekken over sport, verhuizingen en andere dagelijkse
bezigheden.

Bernard, toen mijn project een aantal jaar liep, kwam ik binnen jouw
interessegebied te werken. Ik ben je dankbaar voor alle gesprekken die we
hebben gehad over mijn project. Elke week wilde je dat ik even langsliep
om je op de hoogte te houden van wat ik had gedaan, hoe ik verder wilde,
en ook al had ik niet echt iets nieuws te vertellen, dan kregen we dat uurtje
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ook wel vol door over de dagelijkse gang van zaken te praten. Bedankt!
Cees, hoewel je mijn promotor bent, hebben we in de eerste jaren

van mijn promotietraject weinig samengewerkt of overleg gevoerd. Toen
Rob vertrok naar Groningen, stond je erop dat wij samen toch echt die
paar meer technische projecten zouden gaan doen, die al zo lang op de
plank lagen. In het begin was ik daar nogal huiverig voor. Ik vond de
mathematische statistiek-bijeenkomsten die we regelmatig hadden leuk,
leerzaam en interessant, maar om nog een ommezwaai te maken in het
laatste jaar van mijn promotie vond ik toch wel moeilijk. Maar jij zette door
en overtuigde mij ervan dat dit echt ten goede kwam voor mijn proefschrift,
mijn ontwikkeling en mijn toekomst. Ik kan nu zeggen, het is een zwaar
jaar geweest dat laatste, maar ik heb er zoveel van geleerd. Niet alleen
leerde je me op een andere manier naar psychometrie en wetenschap te
kijken, maar dat stukje wat ik ergens steeds miste doordat ik niet wist wat
er achter al die modellen zat, leerde jij mij inzien. Ik leerde in een half
jaar programmeren, en we schreven twee artikelen. Heel erg bedankt dat je
doorzette om mij ook dit stukje bij te brengen en voor de andere gesprekken
die we hadden over levenswijzen, idealen en wat dan ook meer.

Naast mijn directe begeleiders wil ik mijn collega’s van OMD bedanken
voor de gezellige sfeer, die maakte dat ik met plezier naar mijn werk ging.
Bij naam wil ik hier noemen, Rinke en Hanneke, mijn kamergenoten,
die er voor zorgden dat ik niet alleen en eenzaam op een kamertje zat.
Jullie allebei bedankt voor de gezelligheid op onze werkplek en de leuke
professionele en dagelijkse gesprekken.

Marie, Jose en Servan zorgden voor de afwisseling tijdens het werk. Het
was fijn af en toe te gaan sporten, wandelen of gewoon gezellig bij te kletsen
bij een kopje thee.

Verder bedank ik Iris voor de gezelligheid en daarnaast de hulp bij het
verzamelen van de data in het eerste jaar. Voor de dataverzameling ben
ik ook dank verschuldigd aan Ilse van den Bosch, Egon Wevers, en René
Delnooz, en natuurlijk alle leerlingen en studenten die de tijd namen de
vragenlijsten in te vullen.

Gavin bedank ik voor het beschikbaar stellen van zijn gegevens en de
samenwerking in het schrijven van het derde hoofdstuk van dit proefschrift.

Cees Aarts, Theo Eggen, Karin Sanders en Klaas Sijtsma, bedank ik
voor het zitting nemen in mijn promotiecommissie.

Naast alle wetenschappelijke collega’s ben ik natuurlijk ook dank
verschuldigd aan mijn vrienden en familie. Ook van hen noem ik slechts
enkelen bij naam. Petra wil ik bedanken voor onze vriendschap, voor
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de sportieve pauze’s en dat ze me als paranimf wil begeleiden bij de
verdediging. Suzanne bedank ik voor de begeleiding tijdens mijn promotie
als paranimf, voor het ontwerpen van het omslag van mijn proefschrift en
haar en Koen bedank ik voor alle leuke avonden, uitstapjes en vakanties,
die we met zijn vieren ondernemen.

Dan ben ik aangekomen bij mijn ouders Jan en Els, en mijn broertje
Theo. Het is heel fijn te weten dat jullie altijd voor me klaar staan, interesse
tonen in wat ik doe, en net zo trots zijn op dit resultaat als ik dat ben.

En als laatste, mijn lieve vriend Björn, voor de hulp bij de lay-out van
mijn proefschrift, voor al het geduld dat je hebt moeten opbrengen in met
name het laatste half jaar, maar bovenal voor het feit dat je altijd voor me
klaar staat, me altijd steunt, en voor alle leuke dingen die we samen doen.

Anke Weekers
november 2009
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Stellingen
behorend bij het proefschrift

Modeling typical performance measures
door Anke M. Weekers

1. De stelling "er zijn geen perfecte indicatoren voor kenmerkend
gedrag: er zijn alleen maar aanwijzingen, en aanwijzingen zijn
altijd dubbelzinnig (Funder, 1997)" maakt de moeilijkheden bij de
ontwikkeling en interpretatie van vragenlijsten duidelijk.

2. Wat standaard is in onderzoek naar prestatie- en onderwijskundige
toetsen, hoeft dat voor vragenlijsten niet te zijn. Ieder type test of
toets heeft zijn eigen doelen en kan dus een andere aanpak vereisen
(dit proefschrift).

3. Om de validiteit van vragenlijsten te onderzoeken is het belangrijk
gebruik te maken van modellen die zowel algemene als specifieke
factoren in ogenschouw nemen (dit proefschrift).

4. Ontvouwingsresponsprocessen kunnen de variëteit in kenmerkend
gedrag items vergroten, alsmede het meetspectrum verbreden (dit
proefschrift).

5. Een goed model hangt niet alleen af van de passing van het gehele
model, de items en de personen. De combinatie met interpretatie
maakt het waardevol (dit proefschrift).

6. De kloof tussen de universitaire psychometrie en de daadwerkelijke
toepassingen in de praktijk is te groot en lijkt alleen maar toe te
nemen.

7. Een onderzoeksvraag levert niet altijd datgene op wat je ervan had
verwacht: dat houdt de spanning erin.

8. Ook een niet significante uitkomst of een uitkomst waarin geen
verschil gevonden wordt is een waardevolle uitkomst.

9. Het beste moment voor reflectie is in de auto op de snelweg tussen
Enschede en Vianen.

10. Geen proefschrift zonder koffie (en IRThee).

Funder, D. C. (1997). The personality puzzle. (3rd ed.). New York: Norton &
Company.


